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Abstract
PURPOSE: To build and validate a radiomics-based nomogram for the prediction of pre-operation lymph node (LN)
metastasis in esophageal cancer. PATIENTS ANDMETHODS:A total of 197 esophageal cancer patients were enrolled in
this study, and their LN metastases have been pathologically confirmed. The data were collected from January 2016 to
May 2016; patients in the first three months were set in the training cohort, and patients in April 2016 were set in the
validation cohort. About 788 radiomics featureswere extracted from computed tomography (CT) images of the patients.
The elastic-net approach was exploited for dimension reduction and selection of the feature space. The multivariable
logistic regression analysis was adopted to build the radiomics signature and another predictive nomogrammodel. The
predictive nomogram model was composed of three factors with the radiomics signature, where CT reported the LN
number and position risk level. The performance and usefulness of the built model were assessed by the calibration and
decision curve analysis. RESULTS: Thirteen radiomics features were selected to build the radiomics signature. The
radiomics signaturewas significantly associatedwith the LNmetastasis (Pb0.001). The area under the curve (AUC) of the
radiomics signature performance in the training cohort was 0.806 (95% CI: 0.732-0.881), and in the validation cohort it
was 0.771 (95% CI: 0.632-0.910). The model showed good discrimination, with a Harrell’s Concordance Index of 0.768
(0.672 to 0.864, 95% CI) in the training cohort and 0.754 (0.603 to 0.895, 95%CI) in the validation cohort. Decision curve
analysis showed our model will receive benefit when the threshold probability was larger than 0.15. CONCLUSION: The
present study proposed a radiomics-based nomogram involving the radiomics signature, so theCT reported the status of
the suspected LNand the dummyvariable of the tumor position. It canbepotentially applied in the individual preoperative
prediction of the LN metastasis status in esophageal cancer patients.
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Introduction
Esophageal cancer (EC) is the eighth most common malignancy in
the world and the incidence is rapidly increasing [1,2]; it is associated
with an overall 5-year survival rate of 5% to 20% [3–5]. Surgery
remains the only curative treatment with a 5-year survival rate of
34-36% for resectable EC treated with surgery alone, especially for
early stage patients [6]. The overall 5-year survival rate after surgery is
70-92% for EC patients without nodal involvement, but only
18-47% for EC patients with lymph node metastasis [7,8].

Surgery approach is dependent on the location of lymph node
involvement. The left thoracic approach (Sweet procedure) has merits
of a single incision and adequate exposure of the hiatus, but provides
insufficient lymphadenectomy in the upper mediastinum. On the
contrary, the right thoracic approach (Ivor Lewis procedure) aims to
improve the survival by offering a more extended radial lymphad-
enectomy. Significantly better 3-year DFS and OS rates among
patients who received right thoracic esophagectomy were found, as
compared with left thoracic esophagectomy. These benefits were only
seen in patients with lymph node involvement and/or positive
resection margins, and not in patients without lymph node
involvement and negative resection margins [9].
Figure 1. The common process of a radiomics approach. (a) The featu
working out the lesion region. All radiomics features will be calculated
refined features and build the “radiomics signature”; and (c) the stat
Although the 7th edition of UICC TNM staging has modified the
scoring system, it still remains many controversies on the accuracy
and reliability of the nodal portion of the TNM staging system. Since
some potentially relationships between the critical prognosis
information and lymph node (LN) status were omitted [10].
Currently available imaging techniques, endoscopic ultrasound
(EUS), Computed tomography (CT), Endobronchial ultrasound
(EBUS), 18F-fluorodeoxyglucose positron emission tomography
(FDG-PET), and FDG-PET/CT, all have their limitations, and
suboptimal imaging quality often leads to an incorrect assessment of
regional lymph node involvement [11]. Currently, there are no
acceptable guidelines for upstaging the nodal status even though the
immunohistochemical analysis has detected the micrometastases.

CT is the most common imaging modality and has a good
description of EC tumors. However, identifying the LN metastasis
status of EC in CT images is a challenging and meaningful work.
Driven by the “big-data” trend, “radiomics” was proposed and then
developed rapidly [12]. Because of its non-invasive and low-cost
properties, “radiomics” could be regarded as a proper approach for
pre-diagnosis assistance. “Radiomics” converts medical images into
abstract numerical features, and uses data-mining algorithms for
re extraction phase, reading the raw DICOM format clinical data and
on those segmentations; (b) the feature analysis phase: select the

istical analysis phase: build and assess the nomogram.
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analysis. It is desirable to quantify the clinicians’ years of experience as
a valuable reference [13,14]. It is also known that “radiomics”-based
signatures as biomarkers have correlations with clinical stages, LN
metastasis, and tumor heterogeneity [15,16]. Radiologists and
clinicians started to pay attention and welcome “radiomics”
approaches and conclusions in many diseases including CL [17,18].
In this study, we aim to build and validate a radiomics-based

nomogram involving radiomics signature and radiological observation
factors for the individual prediction of LN metastasis in preoperative
esophageal cancer patients. Figure 1 illustrates the flowchart of the
research sequence.

Materials and Methods

Patients
In the present study, we enrolled 197 patients with esophageal

cancer between January 2016 and May 2016. We collected their
pre-treatment CT images and pathologically confirmed the lymph
node metastases status. The inclusion criteria we followed are: (a)
patients who had collected CT images before any treatment; (b)
patients who received lymph node dissection 15 days after the first
CT acquisition; and (c) patients who had pathologically confirmed
LN metastasis results after the operations. In order to guarantee the
consistency of CT and pathological results, 15 days is our criteria
because overdue CT images may not reveal the postoperative
pathology. The exclusion criteria we followed are: (a) patients who
were under 18 years of age; (b) patients who had further treatment
Figure 2. The demonstration of our radiologists working on the tumor s
results in axial, sagittal, coronal planes; (d) the mesh visualization of th
(like radiotherapy and chemotherapy); (c) patients who had treatment
in other institutes and (d) histological grade was unconfirmed.

Patients were divided into two individual cohorts for the cut-off
date of March 31, 2016. The training cohort consisted of patients in
the first three months (January to March 2016). The remaining
patients (in April to May 2016) formed the validation cohort.
Patients’ pathological classification, clinical T and N stages were
collected from pathological reports directly. We also collected CT
reports of the enrolled patients. We extracted the number of
metastatic LN and the tumor position in CT reports. Here we defined
the semantic feature of the tumor positions depending on the degree
of risk (0, 1, and 2 as the lesions in the upper, middle and lower parts
of the thoracic esophagus in anatomy). All CT reports were confirmed
by two level radiologists’ reviews.

Image Acquisitions and Tumor Segmentation
We acquired our images from the Department of Radiology at

Henan Cancer Hospital between Jan 2016 and May 2016. We
performed the contrast-enhanced CT of Chest on every patient after a
50s delay following intravenous administration of 90 ml of iodinated
contrast material (Ousu, Yangtze River Pharmaceutical, Taizhou,
China) at a rate of 3.0–4.0 ml/s with a pump injector (Spectris Solaris
EP; One Medrad Drive Indianola, PA, USA). Three multi-detector
row CT (MDCT) systems were used for acquisition: Phillips 256
iCT, Phillips Medical System; Bright speed 16-slice CT or light speed
Pro 32-slice VCT, GE Medical systems, USA. The acquisition
parameters were set as follows: 110-120 kV; 168-324 mA; 0.5 or 0.4 s
egmentation with ITK-SNAP. (a), (b), (c) screenshots of segmentation
e lesion sample.
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rotation time; detector collimation: 64 × 1.25 mm or 64 × 0.625mm
or 16 × 1.25mm or 32 × 1.25mm; field of view, 500 × 500mm;
matrix, 512 × 512. Contrast-enhanced CT was performed. All CT
images were reconstructed with a standard kernel. These CT images
were retrieved from the picture archiving and communication system
(PACS) (Neusoft v5.5.60801, Shenyang, China).

Radiologists with over 5 years of experience examined each layer of
the patients’ CT data. In China, radiologist with over 5 years of
experience can have the right to check the report. We performed the
manual segmentation of the esophageal tumor on each patient's CT
images. We introduced “ITK-SNAP” for this task (www.itksnap.org)
[19]. ITK-SNAP is an open-source and free software application used
to segment structures in 3D medical images. Two radiologists with
more than five years of experience in interpreting chest radiology
outlined all of the tumor regions in each patient’s CT image layer
(Figure 2). These regions of interests (ROIs) would be used in
subsequent feature extraction for further analysis.

Radiomics Feature Extraction
Radiomics feature extraction was based on the segmentation results

from the previous section. We implemented the calculation through
our homemade Matlab scripts (Matlab 2014b, Mathworks, USA).
Features included certain categories: first-order histogram statistics,
Gray-Level Co-occurrence Matrix (GLCM), Gray-Level Run-length
Matrix (GLRL), Fractal Dimensions, and wavelet filtered GLCM and
GLRL [20–22]. A total of 788 features were extracted, which covered
the major high-throughput radiomics features of current studies. The
Table 1. Demographic statistics of patients in the training and validation cohorts

Training cohort

Characteristics LN+ LN-

n = 42 n = 98

Gender
Male 16 51
Female 26 47

Age
Mean 59.5 63.6
Median 60.0 64.5
Range 42~74 46~86
SD 7.4 7.6

Position
0 5 13
1 20 49
2 17 36

T stage
1 0 18
2 6 24
3 33 52
4 3 4

N stage
0 - 98
1 23 -
2 15 -
3 4 -

CT Report
0 24 65

Number 1~2 17 29
N3 1 4

Note:
P value is calculated from the univariable association test between sub-groups
χ2 test and Fisher’s exact test for categorized variables; two-sample t-test for continues variables
* P value b 0.05
† The comparison between the training cohort and validation cohort
Abbreviations: LN, lymph node; +, metastasis positive; - metastasis negative, CT, computed tomography; SD,
details of the radiomics features calculation can be found in the
Supplementary Doc. S1.

Radiomics Signature Building
We built the radiomics signature with selected features on the

training cohort. The feature selection approach we adopted was the
“elastic-net”, which is a combination and expansion of the least absolute
shrinkage selection operator (LASSO) and the Ridge Regression
[23,24]. To screen out the effective and predictable features from
high dimensional feature space, ten-fold cross validation was used in the
parameters tuning of the “elastic-net”. We exploited the logistic
regression model to build the radiomics signature for each patient. The
radiomics signature is a linear combination of selected features with
respective weights, which would be calculated as a factor (radiomics
score, Rad-score) for the further prediction model. The assessment
method of the logistic regression model is the receiver operating
characteristic curve (ROC) and its area under the curve (AUC).

Nomogram Building
The nomogram with the predicting model was based on the

multivariable logistic regression analysis. The following candidate
factors: CT-reported LN status (dichotomized variable: “0” for no
metastasis, “1” for metastasis), CT-reported positions (dummy
variable: “0”, “1” and “2”) and Rad-scores were involved in a
diagnostic model for predicting LN metastasis. The nomogram is a
graphical representation of this prediction model in the training
cohort. It would be tested in the validation cohort.
Validation cohort P†

P LN+ LN- P

n = 19 n = 38 0.734

0.453
0.130 12 26 0.769

7 12
0.919

0.004* 63.2 62.2 0.660
63.0 62.5
50~79 50~75
7.5 7.3

0.863
0.912 3 6 0.827

10 17
6 15

0.372
0.005* 1 10 0.209

5 10
12 15
1 3

0.957
- 38
11 -
6 -
2 -

0.093
0.430 15 29 0.970

3 7
1 2

standard deviation.

http://www.itksnap.org


Table 2. Selected Features with Descriptions

Feature Name Description

Length The lesion length measured by the CT layers
Energy Measure of the overall intensity of the ROI
Kurtosis Measure of the sharpness of the histogram
GLRL_RLN_45 Measure of the gray scale texture repeatability
a1_GLRL_LRE_135 High dimensional wavelet texture analysis
a1_GLRL_SRHGE_0
a2_GLCM_PROBABILITY_0
a2_GLRL_HGRE_0
a2_GLRL_LGRE_45
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Nomogram Validation
The building of a radiomics nomogram was assessed by calibration

curves in both training and validation cohorts. The discrimination power
of the predicting model was evaluated by Harrell’s concordance index
(C-Index) [25]. We used the bootstrap approach for resampling in 1000
times, to calculate theC-indexwith 95%confidence intervals [26] in both
cohorts. The calibration curves were drawn for assessing the agreement
between the predicted results and true outcomes of LN metastasis [27].
The decision curve analysis was introduced to evaluate the quantified net
benefit of our prediction model in the validation cohort [28].
hd_GLRL_SRHGE
hd_GLRL_SRE_45
hd_GLRL_SRE_90
hd_GLRL_SRHGE_135

Note:
1. prefix of “a1”, “a2”, “hd”mean the different densities and directions of the wavelet transform performed in
Matlab
2. suffix of “0”, “45”, “90”,“135” mean the directions of gray-level matrix directions.
Statistical Tools
We performed the statistical analysis in R (version 3.3.0; http://

www.Rproject.org). The used R packages of this paper are listed in
the Supplementary Table S1. The statistical significance levels were all
Figure 3. Feature selection using the elastic-net method with a
logistic regression model. (a) Tuning parameter λ in the elastic-net
model. The parameter λwere selected under the minimum criteria.
The vertical line was drawn at the value selected by using 10-fold
cross-validation, including optimized 13 nonzero coefficients. (b)
Themodel coefficient trendlines of the 788 radiomics features. The
profile graph was plotted by coefficients against the L1 norm
(inverse proportional to log λ).
set as two-sided at P = 0.05 in our report. We assessed the calibration
curves with the Hosmer-Lemeshow test. The Hosmer-Lemeshow test
is a common statistical test for evaluating the goodness of fit for
logistic regression. Common comparisons of patients’ characteristics
were conducted by a two-sample t-test for continuous variables.
Fisher’s exact test and χ2 test were used for categorical variables. The
Mann-Whitney U test was utilized for testing the potential
correlation of the radiomics signatures and the LN status in both
training and validation cohorts. We introduced the inter-observer
correlation coefficients (ICCs) to assess the agreement of extracting
features by two-level radiologists.
Figure 4. ROCs were employed to assess the radiomics signature
discriminative performance of the LN metastasis. ROC in the
training cohort with 0.806 (95% CI: 0.732-0.881, sensitivity =
67.9%, specificity = 82.7%); ROC in the validation cohort with
0.771 (95% CI: 0.632-0.910, sensitivity = 76.7%, specificity =
61.2%).

http://www.Rproject.org
http://www.Rproject.org


Figure 5. (a): Rad-score for each patient in the training cohort (b): Rad-score for each patient in the validation cohort
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Results

Patients’ Characteristics
Patients’ characteristics with statistics are listed in Table 1. There

are 140 patients enrolled in the training cohort and 57 patients in the
validation cohort. Two cohorts have no significant difference in the
LN metastasis (P = 0.734, χ2 test). There were no significant
differences in other factors. We have found that the accuracy of the
CT reported LN metastasis number in our cases was quite low (0.59),
and with an extremely high false negative rate (0.64).
Selected Radiomics Features
Based on the elastic-net approach in the training cohort, we selected

the features with non-zero coefficients. As a result, 13 radiomics features
were screened out from 788 features. Figure 3 illustrates the parameter



Table 3. Results of the Multivariable Logistic Regression

Coefficient Odds Ratio 95% CI P

Lower Upper

Intercept -1.798 b0.001*
Radiomics signature 0.807 1.255 1.100 1.433 b0.001*
CT Report LN status 0.581 1.788 1.144 2.796 0.046*
Position 0.600 3.323 1.637 6.741 0.002*

Note: * P b 0.05.

Translational Oncology Vol. 11, No. xx, 2018 Shen et al. 821
tuning procedure of the regression model and the feature space
reduction. As a result, Table 2 lists the name and description of the
selected features. The inter-observer correlation coefficients (ICCs)
between two radiologists’ agreement is 0.873 (0.758 to 0.921, 95%CI).
Radiomics Nomogram Development
We employed the selected features in the last section to build the

radiomics signature, which is the linear combination of the logistic
regression model with the selected features. The radiomics signature’s
discriminative power of the LN metastasis was assessed by two ROCs
in the both cohorts correspondingly (Figure 4). Radiomics scores
(Rad-scores) of patients were calculated through the elastic-net model
with selected features with their corresponding weights. Figure 5
shows each patient’s Rad-scores in both the training cohort and
validation cohort. We enrolled the Rad-scores, the status of the
suspected LNs by the CT report and tumor positions as factors in a
multivariable logistic regression analysis to build the personalized LN
status prediction model. The coefficients of the model are listed in
Table 3. All factors met the significant level, but the “CT Report LN
status” was on the edge of significance. Hence, we discarded this
factor out of our model. Subsequently, the radiomics-based
nomogram was developed by the prediction model (Figure 6).
Figure 6. The nomogram of diagnosis model. Our radiomics based n
CT reported the suspecting lymph node (LN) status and the tumor p
Validation of the Radiomics Nomogram
We achieved an acceptable calibration in the validation cohort as

shown in Figure 7. The Hosmer-Lemeshow test showed that the
statistical difference between the calibration curves and the ideal
curves was non-significant (P = 0.541 for the training cohort and P =
0.093 for the validation cohort). The C-index of the radiomics-based
nomogram was 0.768 (0.672 to 0.864, 95% CI) for the training
cohort and 0.754 (0.603 to 0.895, 95% CI) for the validation cohort.
The decision curve analysis (DCA) for the prediction model derived
from the radiomics-based nomogram is presented in Figure 8. The
DCA showed that our prediction model had a better net benefit than
either the treatment or no treatment schemes when the threshold
probability was greater than 0.15.
Discussion
In the present study, we developed a predictive model of preoperative
EC LN metastasis. The model incorporated three factors: radiomics
signature, CT reported suspicious LN number and the tumor position
to predict the LN metastasis status. The radiomics signature was
significantly associated with the risk of LN metastasis. The nomogram
was derived from the prediction model with good calibration and
validation. The nomogram has the potential to assist in a preoperative
clinical diagnosis, to some extent, which is intuitive to clinicians.

Selecting features from a massive feature pool is the key procedure
of a radiomics study. The less useful features can streamline the
prediction model and prevent overfitting issues. In this study, 13
features were screened out from the 788 features’ pool using the
elastic-net approach, which also created a radiomics signature
simultaneously through the embedded logistic-regression. According
to some statistical modeling reference [29], 13 features of the 197
cases had a proper ratio for building the prediction model that could
avoid overfitting. Hence, we found similar ROCs with close AUCs
(0.806 and 0.771) in two cohorts of the radiomics signature for the
discrimination power of the LN metastasis (Figure 4). The selected
omogram was built in the training cohort. The radiomics signature,
osition (dummy variable) was incorporated as factors.



Figure 7. Calibration curves of the radiomics-based diagnosis
nomogram. The red dotted line closer to the blue dotted line
indicates a better calibration. (a) The calibration curve of the
training cohort; (b) the calibration curve of the validation cohort.
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radiomics features with a description are listed in Table 2. Features of
“Length” and “Energy” are highly consistent with the normal
radiological experience, which describes the external contour
information of the tumor. The longer length and higher CT
enhanced values mean more tumor invasions, hence this leads to
higher risk of LN metastasis. These two features can be captured by
naked eyes, but our model quantified those experiences into accurate
coefficients and factors. The feature of “Kurtosis” is a common
measure of a CT gray-level histogram. It often appeared in the early
year's medical image post-processing studies. The feature of
“GLRL_RLN_45” and the resting wavelet features mainly represent
the texture complexity of tumors. Several papers proved that the
texture information of tumors is highly associated with the tumors’
heterogeneity, and the heterogeneity is closely related to the patient’s
prognosis [22,30]. Yip et al. introduced this idea into their recent
research in EC [18]. Our results supported this view, and we also
demonstrated that these features are associated with esophageal cancer
LN metastasis. Sequentially, the radiomics signature combined these
multiple imaging features into one biomarker, “Rad-score”, involved
in a multivariable logistic regression model.

We sorted all patients’ Rad-scores with the labeled LN status in
Figure 5. It clearly shows that the Rad-score could potentially separate
the two types of patients. The corresponding statistical tests have also
confirmed that the radiomics signature could be considered as an
image-biomarker. The radiomics signature occupied a dominating
factor position in our model-derived nomogram, compared to the
“Position”. It means the radiomics signature has better discrimination
power compared to the classical radiologists’ perspective. On the
other hand, many researches are currently working on various novel
prognostic markers for EC patients [31]. Our proposed potential
image-based biomarker is preoperative, noninvasive and low-cost.
Identification of lymph node metastases on CT imaging is often
difficult, especially for nodal micrometastases. In our study, the
accuracy of conventional CT evaluation of lymph node metastases
was only 0.61 with a false negative rate of 0.66. The meta-analysis
supports this low rate result [32]. However, the radiomics signature
achieved the AUC over 0.75 (with reasonable sensitivities and
specificities), and the accuracy was over 0.8 (Figures 4 and 5). We
believe it is a gratifying improvement for non-invasive approaches.
Prediction model included the CT reported status and position of
conventional CT factors and they also showed the ability of
differential diagnosis for the LN status, especially for the position.
Some reports showed that the position of the EC was correlated with
prognosis, so a dummy variable procedure was used for the risk degree
of the position, and it works in the model. A nomogram was built to
assist radiologists in providing predictive information by simple
scoring, and any other new useful factors could be absorbed into the
model to elaborate the model of the nomogram.

Patients without LN metastases (N0) accounted for the majority in
our datasets. This is because we take the surgical treatment as the first
choice for early stage EC patients (T1 or T2) in China. For advanced
patients (T3 or T4), we tend to take the strategy of chemotherapy first
and then surgery, those patients are out of the inclusion criteria. The
norms maybe different between west countries and the East Asia.
West countries normally thought

Controversies is still going on regarding the optimal surgical
approach for better patient overall survival. In Western countries,
more attention is paied to transhiatal or transthoracic procedures
[33,34]. The transthoracic approach is widely used in China, however,
the debate between the left and right thoracic approaches is still
ongoing. The left thoracic approach shows advantages of a single
incision and adequate exposure of the hiatus, but difficulty for sufficient
lymphadenectomy in the upper mediastinum. On the contrary, the
right thoracic approach aims to increase the survival by offering
sufficient radial lymphadenectomy [9], even after several years of being
recommended by the Chinese Anti-Cancer Association [35]. Mean-
while, it was reported that extent of lymph node dissection should
accord to the incidence of metastasis [36].

A pooled sensitivity of 80% and specificity of 70% of N-staging
were reported in a recent meta-analysis including both EUS and
EUS-FNA studies [32]. Both understaging (3 %) and overstaging (25
%) of lymph node involvement were reported [37]. A study that
compared EUS (without FNA) with FDG-PET and CT found that
the accuracy of EUS was not significantly higher than FDG-PET or
CT (75%vs. 66%and 63 %, respectively, P N 0.05) [38]. Similar
results were found in a third study where the accuracy of EUS in
diagnosing lymph node metastases was 65 % and only 44 % for



Figure 8. The decision curve analysis (DCA) of the radiomics-based nomogram. The blue line describes the scheme of no treatment. The
green line describes the scheme of treatment. The red line represents our personalized prediction model. The x-axis is the threshold
probability and the y-axis is the net benefit. The decision curve shown by the pink line (our prediction model) received more net benefit
when the threshold probability was larger than 0.15. Hence, if the patient would choose the treatment when his probability of cancer was
larger than 15%, then he would receive benefit from taking our radiomics-based nomogram guidance.
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small-sized lymph node metastases (b1 cm) [39]. Likewise, the
limited value of CT in determining lymph node status is indicated by
a meta-analysis reporting a sensitivity of 50 % (95% CI 41–60 %)
and specificity of 83 % (95% CI 77–89 %) [32]. Regarding
FDG-PET in the assessment of regional lymph node metastases, a
meta-analysis revealed a poor pooled sensitivity of 51 % (95% CI
34–69 %) and specificity of 84 % (95% CI 76–91 %) [40].
Limitations of the present study include three aspects. First, the

amount of dataset information is inadequate. Commonly, a larger
amount of data will improve the confidence and performance of our
model. Second, there was only one imaging modality in our study
involving dynamic contrast enhanced images and more image
modalities, such as MRI, which will expand the feature pool and
may find more valuable radiomics features. Finally, the genomic
information was not considered in our study. Currently, many works
are seeking the correlation between genetic markers and image
features so-called “radio-genomics”.

Acknowledgement
This paper is supported by the National Natural Science Foundation of
China under Grant No. 81772012, and 81501549, the National Key
Research and Development Plan of China under Grant No.
2017YFA0205200 and 2016YFC0103001, the International Innova-
tion Team of CAS under Grant No. 20140491524, Beijing Municipal
Science & Technology Commission No. Z161100002616022,
Z171100000117023.

Disclosure Statement
This retrospective study was approved by the institutional review

board of the Affiliated Cancer Hospital of Zhengzhou University,
Henan Cancer Hospital, which waived the requirement for the
patients’ informed consent. Medical record review was performed in
accordance with the institutional ethics review board guidelines. All
authors had full access to all of the data in the study and had final
responsibility for the decision to submit for publication. All authors
has no conflict of interest.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://

doi.org/10.1016/j.tranon.2018.04.005.

References

[1] Enzinger PC and Mayer RJ (2003). Esophageal cancer. N Engl J Med 349(23),
2241–2252.

[2] van Hagen P, et al (2012). Preoperative chemoradiotherapy for esophageal or
junctional cancer. N Engl J Med 366(22), 2074–2084.

[3] Kumbasar B (2002). Carcinoma of esophagus: radiologic diagnosis and staging.
Eur J Radiol 42(3), 170–180.

[4] Siegel R, Naishadham D, and Jemal A (2012). Cancer statistics for
hispanics/latinos, 2012. CA Cancer J Clin 62(5), 283–298.

[5] Tanaka K, et al (2016). Negative influence of programmed death-1-ligands on
the survival of esophageal cancer patients treated with chemotherapy. Cancer Sci
107(6), 726–733.

[6] Omloo JM, et al (2007). Extended transthoracic resection compared with limited
transhiatal resection for adenocarcinoma of the mid/distal esophagus: five-year
survival of a randomized clinical trial. Ann Surg 246(6), 992–1001.

[7] Lerut TE, et al (1994). Advanced esophageal carcinoma. World J Surg 18(3),
379–387.

[8] Waterman TA, et al (2004). The prognostic importance of immunohistochemi-
cally detected node metastases in resected esophageal adenocarcinoma. Ann
Thorac Surg 78(4), 1161–1169.

[9] Li B, et al (2017). Extended right thoracic approach compared with limited left
thoracic approach for patients with middle and lower esophageal squamous cell
carcinoma: three-year survival of a prospective, randomized, Open-label Trial.
Ann Surg.

https://doi.org/10.1016/j.tranon.2018.04.005
https://doi.org/10.1016/j.tranon.2018.04.005
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0005
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0005
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0010
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0010
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0015
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0015
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0020
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0020
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0025
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0025
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0025
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0030
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0030
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0030
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0035
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0035
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0040
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0040
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0040
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045


824 Shen et al. Translational Oncology Vol. 11, No. xx, 2018
[10] Kayani B, et al (2011). Lymph node metastases and prognosis in oesophageal
carcinoma – a systematic review. Eur J Surg Oncol 37(9), 747–753.

[11] van Rossum PS, et al (2013). Imaging strategies in the management of
oesophageal cancer: what’s the role of MRI? Eur Radiol 23(7), 1753–1765.

[12] Gillies RJ, Kinahan PE, and Hricak H (2015). Radiomics: images are more than
pictures, they are data. Radiology 278(2), 563–577.

[13] Yip SS and Aerts HJ (2016). Applications and limitations of radiomics. Phys Med
Biol 61(13), R150.

[14] Zhou M, et al (2014). Radiologically defined ecological dynamics and clinical
outcomes in glioblastomamultiforme: preliminary results. Transl Oncol 7(1), 5–13.

[15] Aerts HJ, et al (2014). Decoding tumour phenotype by noninvasive imaging
using a quantitative radiomics approach. Nat Commun 5.

[16] Coroller TP, et al (2017). Radiomic-based pathological response prediction from
primary tumors and lymph nodes in NSCLC. J Thorac Oncol 12(3), 467–476.

[17] Huang Y-q, et al (2016). Development and validation of a radiomics nomogram
for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin
Oncol 34(18), 2157–2164.

[18] YipC, et al (2015). Assessment of changes in tumor heterogeneity following neoadjuvant
chemotherapy in primary esophageal cancer. Dis Esophagus 28(2), 172–179.

[19] Yushkevich PA, et al (2006). User-guided 3D active contour segmentation of
anatomical structures: significantly improved efficiency and reliability. Neuro-
Image 31(3), 1116–1128.

[20] Haralick RM and Shanmugam K (1973). Textural features for image
classification. IEEE Trans Syst Man Cybern 3(6), 610–621.

[21] Galloway MM (1975). Texture analysis using gray level run lengths. Comput
Graph Image Process 4(2), 172–179.

[22] Ganeshan B, et al (2012). Tumour heterogeneity in oesophageal cancer assessed
by CT texture analysis: preliminary evidence of an association with tumour
metabolism, stage, and survival. Clin Radiol 67(2), 157–164.

[23] Tibshirani R (1996). Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B Methodol , 267–288.

[24] Friedman J, Hastie T, and Tibshirani R (2010). Regularization paths for
generalized linear models via coordinate descent. J Stat Softw 33(1), 1.

[25] Harrell Jr FE (2008). Hmisc: harrell miscellaneous. R package version; 2008. 1(2).
[26] Canty A and Ripley B (2012). boot: Bootstrap R (S-Plus) functions. R package

version; 2012. 1(7).
[27] Pencina MJ, D'Agostino RB, and Steyerberg EW (2011). Extensions of net

reclassification improvement calculations to measure usefulness of new
biomarkers. Stat Med 30(1), 11–21.
[28] Vickers AJ, et al (2008). Extensions to decision curve analysis, a novel method for
evaluating diagnostic tests, prediction models and molecular markers. BMC Med
Inform Decis Mak 8(1), 53.

[29] Harrell F (2015). Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer; 2015.

[30] Ng F, et al (2013). Assessment of primary colorectal cancer heterogeneity by
using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker
of 5-year survival. Radiology 266(1), 177–184.

[31] Okabayashi K, et al (2012). Cancer-testis antigen BORIS is a novel
prognostic marker for patients with esophageal cancer. Cancer Sci 103(9),
1617–1624.

[32] Van Vliet E, et al (2008). Staging investigations for oesophageal cancer: a
meta-analysis. Br J Cancer 98(3), 547–557.

[33] Khullar OV, et al (2015). Transthoracic versus transhiatal resection for
esophageal adenocarcinoma of the lower esophagus: A value-based comparison.
J Surg Oncol 112(5), 517–523.

[34] Hulscher JB, et al (2002). Extended transthoracic resection compared with
limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med
347(21), 1662–1669.

[35] Mao Y, et al (2013). Nationwide speaking tour of standardized diagnosis and
treatment for esophageal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 16(9),
801–804.

[36] Tachimori Y (2017). Pattern of lymph node metastases of squamous cell
esophageal cancer based on the anatomical lymphatic drainage system: efficacy of
lymph node dissection according to tumor location. J Thorac Dis 9(Suppl. 8),
S724–S730.

[37] Salminen JT, et al (1999). Endoscopic ultrasonography in the preoperative
staging of adenocarcinoma of the distal oesophagus and oesophagogastric
junction. Scand J Gastroenterol 34(12), 1178–1182.

[38] Räsänen JV, et al (2003). Prospective analysis of accuracy of positron emission
tomography, computed tomography, and endoscopic ultrasonography in staging
of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg
Oncol 10(8), 954–960.

[39] Luketich JD, et al (1997). Minimally invasive surgical staging is superior to
endoscopic ultrasound in detecting lymph node metastases in esophageal cancer.
J Thorac Cardiovasc Surg 114(5), 817–823.

[40] Van Westreenen H, et al (2004). Systematic review of the staging performance of
18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J
Clin Oncol 22(18), 3805–3812.

http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0050
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0050
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0055
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0055
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0060
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0060
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0065
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0065
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0070
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0070
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0075
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0075
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0080
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0080
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0085
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0085
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0085
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0090
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0090
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0095
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0095
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0095
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0100
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0100
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0105
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0105
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0110
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0110
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0110
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0115
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0115
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0120
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0120
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0125
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0130
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0130
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0135
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0135
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0135
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0140
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0140
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0140
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0145
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0145
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0145
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0150
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0150
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0150
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0155
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0155
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0155
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0160
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0160
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0165
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0165
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0165
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0170
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0170
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0170
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0175
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0175
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0175
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0185
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0185
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0185
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0195
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0195
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0195
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0200
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0200
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0200

	Building CT Radiomics Based Nomogram for Preoperative Esophageal Cancer Patients Lymph Node Metastasis Prediction
	Introduction
	Materials and Methods
	Patients
	Image Acquisitions and Tumor Segmentation
	Radiomics Feature Extraction
	Radiomics Signature Building
	Nomogram Building
	Nomogram Validation
	Statistical Tools

	Results
	Patients’ Characteristics
	Selected Radiomics Features
	Radiomics Nomogram Development
	Validation of the Radiomics Nomogram

	Discussion
	section16
	Acknowledgement
	Disclosure Statement
	Appendix A. Supplementary data
	References




