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a b s t r a c t

Accurate preoperative prediction of overall survival (OS) risk of human cancers based on CT images
is greatly significant for personalized treatment. Deep learning methods have been widely explored
to improve automated prediction of OS risk. However, the accuracy of OS risk prediction has been
limited by prior existing methods. To facilitate capturing survival-related information, we proposed
a novel knowledge-guided multi-task network with tailored attention modules for OS risk prediction
and prediction of clinical stages simultaneously. The network exploits useful information contained in
multiple learning tasks to improve prediction of OS risk. Three multi-center datasets, including two
gastric cancer datasets with 459 patients, and a public American lung cancer dataset with 422 patients,
are used to evaluate our proposed network. The results show that our proposed network can boost
its performance by capturing and sharing information from other predictions of clinical stages. Our
method outperforms the state-of-the-art methods with the highest geometrical metric. Furthermore,
our method shows better prognostic value with the highest hazard ratio for stratifying patients into
high- and low-risk groups. Therefore, our proposed method may be exploited as a potential tool for
the improvement of personalized treatment.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Lung and gastric cancers are respectively the first and third
eading causes of cancer-associated mortality worldwide (Bray
t al., 2018). Although therapeutic plans (e.g., radiotherapy and
djuvant chemotherapy) for patients are continuously explored
Ajani et al., 2016), 5-year survival rates still remain poor (Hirsch
t al., 2017; Tegels, De Maat, Hulsewé, Hoofwijk, & Stoot, 2014).
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Hence, it is crucial to explore feasible methods (e.g., risk pre-
diction models) to provide personalized treatment for varying
prognoses. The American Joint Committee on Cancer (AJCC) Stag-
ing Manual has become a guideline for diagnosing cancer pa-
tients, determining the schedule of treatment. Particularly, the
tumor, lymph node, and metastasis (TNM) staging manual has
been widely accepted as a guideline of cancer classification for
individualized treatment (Amin & Edge, 2017). The AJCC also
points out that overall survival (OS) prediction based on accurate
risk models is more significant for personalized treatment than
the conventional cancer staging systems (Kattan et al., 2016).

Computed tomography (CT) is a routinely used modality to
facilitate survival risk prediction for gastric and lung cancers in
clinical practice (Hu, Shen, & Sun, 2018; Liu, Johns, & Davison,
2019; Liu, Wang, Liu, Yang, & Tian, 2021; Woo, Park, Lee, &
So Kweon, 2018). CT scans can provide rich information such as
the location, shape, and size of lesions, and display the extent of
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umors on morphological manifestations for patients. The AJCC
ancer staging manual points out that routinely used modality of
T images can provide primary information for assigning clinical
NM (cTNM) stages, which is invaluable for guiding biopsies and
urgical resections for gastric and lung cancers (Amin & Edge,
017; Huang et al., 2016; Li et al., 2019). However, accurate
ssessment of CT images is limited to the information obtained
y experts’ analysis. Recently, an emerging field called radiomics
as shown encouraging results in medical image analysis by CT-
ased machine learning, demonstrating that some hand-crafted
eatures generally contain rich information that is complemen-
ary to the radiologists’ evaluation (Aerts et al., 2014; Hong, Tomé,
Harari, 2012; Li et al., 2019; Warfield, Zou, & Wells, 2008;

hang et al., 2018). However, these methods can only extract
imited pre-defined features and require elaborate segmentation
or tumor regions, which is time-consuming and may result in
oor prediction performance.
Recent advances in convolutional neural networks (CNNs)

ave attracted considerable attention for quantitative medical
mage analysis applications in prognostic prediction models, and
ave shown remarkable performance for gastric and lung cancers
Dong et al., 2020; Jiang et al., 2020; Kather et al., 2019; Kim,
oon, Choi, & Suk, 2019; Lin et al., 2017; Liu, Qi, Qin, Shi, &
ia, 2018; Mukherjee et al., 2020; Tang et al., 2020; Wang et al.,
019; Zhang et al., 2020). Lu et al. proposed a novel neighboring
ware graph neural network (NAGNN) based on neighboring
ware representation (NAR) for detecting COVID-19 using chest
T scans. The authors demonstrated that NAGNN outperformed
tate-of-the-art methods in terms of generalization ability (Lu,
hu, Gorriz, Wang, & Zhang, 2022). Mukherjee et al. designed
shallow CNN (LungNet) to improve the accuracy of survival
rediction (Mukherjee et al., 2020). A previous study showed
hat CNNs can also learn discriminative features from histological
mages for survival prediction tasks in colorectal cancer (Kather
t al., 2019). In our previous work, we employed a residual
etwork to extract high-level features and found that they were
apable of predicting the risk of overall survival (OS) in patients
ith gastric cancer (Zhang et al., 2020). Moreover, previous study
roposed four novel abnormal brain diagnosing methods based
n deep learning for brain MRI, which shows robust performance
nd high accuracy (Lu, Wang, & Zhang, 2020). This method maybe
potential framework to search the optimal feature layers. Re-
ent studies have also focused on new architecture called feature
yramid networks (FPNs), which include semantically strong
eatures for different computer vision tasks and have shown
xcellent performance (Lin et al., 2017; Liu et al., 2018). Jiang
t al. proposed an architecture (S-net) based on FPN architecture
o predict survival risk, and demonstrated that FPN architecture
as efficient for the improvement of prognostic prediction (Jiang
t al., 2020).
Although all of the above-mentioned studies have shown great

pplication of medical images for OS prediction, they largely
ail to explore a knowledge-guided network to combine with
xperts’ evaluations based on CT images (e.g., clinical TNM stag-
ng). The key challenge in automated medical image analysis
s to learn representative features from scarce data. Currently,
promising subfield known as multi-task learning (MTL) has

hown remarkable successes in many deep learning applications,
uch as computer vision (Dai, He, & Sun, 2016; Dorado-Moreno
t al., 2020; Girshick, 2015; He, Gkioxari, Dollár, & Girshick, 2017;
iu et al., 2019), medical image analysis (Tang et al., 2020), and
peech recognition (Ruder, 2017).
In recent years, inspired by human perception, which focuses

n a sequence of several important parts to better process a
hole scene, attention mechanisms have been widely explored
o facilitate network model optimization. They bring out encour-
ging improvements in the performance of different tasks such
395
as detection and segmentation (Hu et al., 2018; Liu et al., 2019,
2021; Pang, Du, Orgun, Wang, & Yu, 2021; Woo et al., 2018).
The purpose of attention networks is to reinforce representa-
tive features and suppress redundant features. A previous study
proposed an attention module of the Squeeze-and-Excitation Net-
work (SENet) to extract discriminative features using a channel
attention network (Hu et al., 2018). However, this study did not
focus on spatial attention. Woo et al. proposed both channel
and spatial attention networks based on pooling and pixel-wise
production (Woo et al., 2018), which has been demonstrated as
an efficient module in classification and detection performance.
Liu et al. proposed a multi-task attention network (MTAN) for
vision tasks, and the results showed the efficiency of their pro-
posed network (Liu et al., 2019). Although the backbone provides
shared features for each task, the attention module in MTAN was
not shared but rather was designed for each task. Furthermore,
regarding survival risk prediction of human cancers, most studies
have only focused on capturing rich information using CT images
for OS prediction.

In clinical practice, the clinical TNM stages are the primary
guidelines for treatment, which are implemented with the in-
volvement of multiple radiologists’ assessments by evaluating CT
images. However, few studies have explored the development of
powerful machine learning methods to integrate prior knowledge
from human expert labeling for OS prediction. Moreover, few
studies have proposed a tailored multi-task CNN architecture to
pay attention to extracting rich information from CT imaging data
and improving the performance of OS prediction models guided
by radiologists’ experience.

In this study, as shown in Fig. 1, we exploit clinical TNM
stages as knowledge-guide information and proposed a novel
multi-task attention pyramid network (KMAP-Net) to improve
the performance of OS risk prediction for lung and gastric cancer
patients. To achieve this, we designed sibling subnetworks to
capture rich information from 2D CT images of multiple scales,
both from the region of interest (ROI) and ROI with the peri-
tumoral region. To improve the learning ability of the proposed
CNN framework, we designed a novel attention module called a
selection and reinforcement attention module (SRAM) to select
important features and reinforce them. SRAM comprises of a
channel attention module (CAM) and a spatial attention module
(SAM). The attention submodules are designed to sequentially
focus on information in both the channel and spatial axes, so
that each convolutional block can find and emphasize important
channels and regions. We designed a multi-task CNN framework
to focus on obtaining rich information from CT images guided
by cTNM with the experience of radiologists to improve OS risk
prediction.

We summarize our main contributions as follows.

1. We propose a knowledge-guided multi-task attention pyra-
mid network (KMAP-Net) to improve the performance of
OS prediction methods in lung and gastric cancer patients,
where both human expert labeled information for clinical
TNM stages and survival times were provided.

2. We propose a learning strategy based on scale-adaptive
inputs to capture rich information from 2D CT images of
multiple scales. The proposed strategy enables the net-
work to capture related features within the tumor and the
immediately surrounding contexts with as little noise as
possible.

3. We propose a novel attention module called SRAM to se-
lect and reinforce important features in both channel and
spatial axes.
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Fig. 1. Overview diagram of our proposed KMAP-Net. (a) Scale-adaptive inputs and sibling encoders. One input includes the ROI colored in red with a red bounding
box. The other input is the scale-adaptive ROI with a peritumoral region with a blue bounding box. The different scale inputs are designed to focus on different
representative features in the two regions, which may contain abundant information for predicting correlation with tumor prognosis. The peritumoral region is
determined by its ROI size. The encoder consists of sibling subnetworks and attention modules. The multi-scale input is designed to focus on different representative
features in both an ROI and an ROI with a peritumoral region for each CT slice. Subnetwork 1 in the two branches has the same architecture of four attention modules
with channel and spatial attention subnetworks. (b) Decoder architecture and multi-task networks. We concatenate the output feature maps in each attention block
in the sibling subnetworks, and multi-level features are also added to the corresponding feature maps in subnetwork 2 with the same size as subnetwork 1. A
merging strategy is applied for the output feature maps in the last attention block. Subnetwork 2 consists of several up-sampling blocks. Three prognostic related
tasks include OS risk prediction, tumor stage prediction and node stage predictions.
2. Methodology

An overview of the proposed KMAP-Net is presented in Fig. 1.
KMAP-Net is designed to employ CT images of different scales
as inputs with the same target size (224 × 224 × 3) to cap-
ure representative features for OS prediction and clinical cancer
tage prediction. The inputs of the KMAP-Net are 2D images
ropped from each slice of CT scans. Our proposed knowledge-
uided multi-task network architecture is composed of two sib-
ing encoders and three task-specific decoders. The sibling en-
oders are equipped with multi-attention modules to perform
iscriminative feature extraction based on the ROIs. The second
et of task-specific decoders performs feature up-sampling and
einforcement.

.1. Scale-adaptive inputs

We design scale-adaptive inputs with multi-scale cropped CT
mages to feed them into sibling subnetworks. For each patient,
e selected a CT slice of the largest ROI and delineated its
oundary precisely. Then, we cropped the tumor region using a
ectangular bounding box according to the delineated boundary.
o compromise the workload for segmentation and sample size,
e also cropped the tumor regions from the nearest upper and

ower slices of the selected slice using the same operation for
ach patient. For impartial comparison, the input image size was
et to 224 × 224. As shown in Fig. 2, the input for one of the
ubnetworks of the encoder includes the ROI colored in red with
red bounding box for each CT scan. The other input is the scale-
daptive ROI with a peritumoral region rather than a fixed size
entioned in a previous study (Wu et al., 2020). Considering that
revious studies have demonstrated that peritumoral regions also
396
contain rich information for prognosis analysis (Pak et al., 2015;
Wang et al., 2020), we designed an adaptive scaling strategy for
the input of a scale-adaptive ROI with the peritumoral region.
Fig. 2 shows the details used to obtain the scale-adaptive input
2. For each patient, each ROI input 1 is defined and its boundary
is delineated by experienced radiologists and outlined it with a
tumor-centered rectangle box. For the input 2 of ROI and per-
itumor, its optimal size is confirmed by our proposed learning
strategy of scale-adaptive inputs. According to its ROI coordinates
(Fig. 2a) defined by experienced radiologists, we can obtain the
corresponding expansion increments of dx and dy to find the
optimal size of the peritumoral area (Fig. 2b). In our study, our
controlled experiments show that we obtained the best optimal
size for input 2 when a parameter of scaling factor k was set as
0.2 by our scale-adaptive strategy.

2.2. Selection-and-reinforcement attention module

Our proposed selection-and-reinforcement attention module
(SRAM) can be an independent component embedded in common
architectures such as SENet and convolutional block attention
module (CBAM) (Hu et al., 2018; Woo et al., 2018). Given an
intermediate input feature map X ∈ RC×H×W , the output of the
channel attention module (CAM) is a tensor of Xc ∈ RC×H×W and
the output of the spatial attention module (SAM) is a tensor of
Xs ∈ RC×H×W . We use the following equation to show the overall
process of operation for the attention mechanism:

Xc = Fc (X) ⊗ X, (1)

X = F X ⊗ X , (2)
s s ( c) c
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Fig. 2. Scale-adaptive inputs with multi-scale cropped images. (a) The input for the subnetwork of the encoder includes the ROI colored in red with a red bounding
ox for each CT scan. (b) The other input is the scale-adaptive ROI with a peritumoral region. The input image size was set to 224 × 224. For each image, according
o its ROI coordinates of (x1 , y1) and (x2 , y2), we can obtain the corresponding expansion increments of dx and dy to find the optimal size of the peritumoral area.
he proposed strategy enables the network to capture related features within the tumor and the immediately surrounding contexts with as little noise as possible.
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here ⊗ represents element-wise production. The functions of Fc
nd Fs represent the operation of the CAM and SAM, respectively.
urther details with respect to CAM and SAM are given as follows.

.2.1. Channel attention module (CAM)
Our CAM attention module is proposed to select important

nformation and reinforce it. The tensor of X can be a transfor-
ation, mapping the input tensor of U. We take an operator of
onvolution to implement the transformation as

= Conv (U) , (3)

nd we describe XN as

N = cN∗U =

N∑
s=1

csN∗us, (4)

here * represents convolution operation, cN =

[
v1N , v2N , . . . , vN ′

N

]
,

N ∈ RH×W . csN is a convolutional kernel denoting a channel
N operating with its corresponding channel U. The bias for the
onvolution is omitted for simplicity. For Conv, xN is a summation
f all the previous channels obtained by cN . Thus, each output
eature map consists of global information of X. However, the
lobal information is present redundantly in various channels
ue to the operations in each local receptive field, which is
ependent on the local relationship learned by the filters (Hu
t al., 2018). To address these drawbacks, we propose a CAM
o select and reinforce representative information from global
nformation to improve the efficiency of the network and enhance
ts representational capacity to capture the relevant information.

As shown in Fig. 3a, to implement the design, we employed
lobal average pooling (GAP) as a simple and efficient method to
ggregate channel-wise statistics, which has been demonstrated
n previous studies (Hu et al., 2018; Woo et al., 2018; Zhou,
hosla, Lapedriza, Oliva, & Torralba, 2016). GAP obtains an in-
ividual signal (tensor of X′) for each channel. The process of
peration for CAM is denoted as follows:

c = Fc (X) ⊗ X = GMP (ReLU (GAP(X) − Mean(GAP(X))) ⊗ X) ⊗ X,

(5)
397
here the functions of GMP, ReLU, GAP, and Mean denote the
perations of GAP, ReLU, GAP, and the average of the value of X′,
espectively. ⊗ represents element-wise production. The Eq. (5) is
sed for selecting important features and reinforce them. We im-
lement GAP operation to calculate retain representative features
n all transformed feature maps and reduce feature dimensions.
he output of GAP operation is an individual signal (tensor of
′) for each channel. We then compute the mean value of the
ggregated signals in all channels. ReLU is used to select the high-
xpression signals (tensor of X′′). Then, we obtain the selected
eature maps by element-wise production of the vectors of X′′

nd X. When we obtain all representative regions by the GAP
peration, we sequentially exploit global max pooling (GMP) to
urther capture local high-expression signals from all represen-
ative feature maps (X′

c) aggregated by GAP. Then, we reinforce
he input feature maps X by identifying the local high-expression
ignals and the operation of element-wise production.
Note that our CAM differs from the attention module known

s CBAM that uses the parallel operations of GAP and GMP (Woo
t al., 2018). The designed CAM is able to select representative
eatures and reinforce them. CAM calculates the global informa-
ion of channels to remove channels that do not contain im-
ortant information, which can improve the efficiency of model
alculation. However, the CBAM only can reinforce the all the
hannels rather than selection. We experimentally demonstrated
hat our proposed method is superior to CBAM for OS prediction,
nd the details are described below.

.2.2. Spatial attention module (SAM)
The architecture of the proposed SAM is illustrated in Fig. 3b.
oo et al. indicated that spatial attention (a module in CBAM) is

lso crucial to locate the discriminative region (Woo et al., 2018).
owever, CBAM only aggregates spatial information with average
nd max pooling to capture the representative information or
he overall spatial content of the corresponding pixel locations
f different channels, which miss the representative information,
r the overall spatial content obtained in the local receptive
ield of all of the channels. Hence, we tailor SAM not only to
ocus on the most informative points of spatial feature maps, but
lso to complement spatial attention with local representative
nformation. The abovementioned process can be described as
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Fig. 3. Architecture of our proposed selection-and-reinforcement attention module (SRAM). The proposed attention modules enable the network to select and reinforce
mportant features in both channel and spatial axes. (a) Channel attention module (CAM). In CAM, we apply the global average pooling and global max pooling
o aggregate the 3D feature maps of X to a 1D vector. We achieve the selection of high-expression signals by simple operation of the rectified linear unit (ReLU)
ctivation function. Then, we exploit the signals to reinforce the input feature maps. (b) Spatial attention submodule (SAM). SAM is designed to focus the informative
oints of spatial feature maps and complement spatial attention with local representative information.
t

ollows:
′

s = Conc[AP(Xc);MP(Xc); Conv7×7(Xc); Conv3×3(Xc)], (6)

Xs = Fs (Xc) ⊗ Xc = Conv7×7
(
X′

s

)
⊗ Xc, (7)

where Conc, AP, MP, Conv7×7, and Conv3×3 denote the opera-
ions of concatenation, average-pooling, max pooling, convolution
ith a kernel size of 7 × 7, and convolution with kernel size
f 3 × 3, respectively. The submodule of SAM is designed to
ocus on the most informative points of spatial feature maps, but
lso to complement spatial attention with local representative
nformation. To achieve this, we exploit the operations of average
ooling and max pooling to aggregate all channels into a single
hannel. We also exploit convolution with kernel sizes of 7 × 7
nd 3 × 3 to generate a local informative combination. We then
oncatenate them as feature maps of X′

s. Subsequently, we apply
convolution operation (kernel size 7 × 7) for the feature maps
f X′

s to generate a spatial informative map X′′
s , which captures

he spatial locations to be reinforced.

.3. KMAP-Net architecture

Our proposed network comprises of two components. As shown
n Fig. 4, the first part is a shared sibling network equipped
ith attention modules. Multi-level features in each block of
ibling networks are concatenated, and we exploit layer-wise
ateral connections to share multi-level feature maps for each
ask. Note that the branch for node stage prediction is the same as
hat for tumor stage prediction, which is omitted considering its
implicity and exploitation. We tailor two subnetworks with the
ame architecture. Our source codes of the proposed method will
e available soon at https://github.com/dreamenwalker/KMAP-
et/.

.4. Multi-level layer-wise lateral connection

We can extract low-level feature maps in the shallow layers
f the decoder, which generalizes the all-side fusion of low-
evel semantic feature maps in the shadow bottom-top path.
 p
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Focusing on low-level features is compelling due to the easy-
to-understand semantic information and the attachment of sta-
tionary weights to specific locations. The task-oriented encoder
with fused high-level feature maps has greater expressive power
than single high-level feature maps in the last few convolutional
layers. In particular, our network fuses low-level information
separately and avoids information consumption in deep layers.
This maintains the feature aggregation to adapt to OS prediction.

2.5. Loss function

As shown in Fig. 1, the proposed network includes three tasks.
The tasks were trained jointly with different loss functions. For
the survival task, we employed the negative log partial likelihood
as a loss function to enable a controlled comparison with previous
studies (e.g., Jiang et al. (2020) and Li et al. (2019)). We trained
all the models by minimizing the loss function for the optimal
estimation of parameter β , as given below:

LOS(β) = −
1
N

N∑
i=1

⎛⎝ĥβ (xi) − log
∑

j∈A(Tj)

eĥβ(xj)

⎞⎠ , (8)

where N is the number of patients with an observed status, and
A(Tj) is a set. For each patient, Tj is the survival time during the
follow-up such that Tj≥Ti. ĥβ (x) is the output of the proposed
network.

The proposed network model was also used to perform clinical
stage prediction, which is a classification task. Considering the
limited number of patients, we conducted secondary tasks for
clinical tumor and node stage prediction as binary classification,
which was obtained via the evaluation of CT images by expe-
rienced radiologists. The total loss of the proposed network is
defined as

LTotal = LOS + LcTstage + LcNstage, (9)

where LOS, LcTstage, and LcNstage represent the loss functions for the
asks of OS prediction, clinical tumor prediction, and node stage

rediction, respectively.

https://github.com/dreamenwalker/KMAP-Net/
https://github.com/dreamenwalker/KMAP-Net/
https://github.com/dreamenwalker/KMAP-Net/
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Fig. 4. Architecture of our KMAP-Net. (a) Decoder with pyramid sibling networks equipped with attention modules. Multi-level features in each block of sibling
networks are concatenated, and we exploit layer-wise lateral connections to share multi-level feature maps for each task. (b) Collaborative multi-task learning with
cascade connection. Note that the subnetwork for node stage is omitted considering the simplicity and explicitation, which is similar to the subnetwork for tumor
stage prediction.
2.6. Implementation of training parameters

Two pre-processing methods were performed for each input
OI, including (1) min max normalization. For an image x, the pre-
rocessed image was xpre−processed = (x-min)/(max-min), where

min is the minimum gray value and max was the maximum
gray value in the image x. This method was used to accelerate
the convergence speed of the proposed network and improve its
performance empirically, and (2) image resampling. The method
was able to resample CT images to a target size of 224 × 224
for the input of our network based on a residual convolutional
neural network. For our deep learning model, the network archi-
tecture is suitable for RGB images, resulting in a three-channel
input. To be suitable for the requirement and decode the tumor
phenotype entirely, each selected single-channel CT slice was
copied twice, and the three single-channel slices were stacked
as a three-channel image. To avoid the danger of overfitting, we
employed data augmentation. For each CT slice in our datasets,
classic augmentation techniques were used, including flipping,
translation, rotation, scaling, adding Gaussian noise, and crop-
ping. The average predicted probability was treated as the OS
probability for each patient.

In this study, the network was trained for two types of tasks,
including survival prediction and classification. We employed a
stochastic gradient descent (SGD) algorithm, set the mini-batch
size as 8 and trained the model for 300 epochs. We set the initial
learning rate to 0.001. We performed network training using
the TensorFlow and Keras libraries and trained the proposed
network on eight NVIDIA 2080Ti GPUs with a 24TB buffer. Other
parameters in the Keras library were left at default values, unless
otherwise indicated.

3. Experimental setup and results

OS prediction has been investigated for decades and remains
a challenge in existing model owing to the necessity of the
laborious collection of survival data for each patient. The long-
term purpose of this study is to explore a powerful model to
accurately predict risk probability given the observed and cen-
sored patents with the status, time duration, clinical TNM staging
information, and image data. In this study, we evaluated our
proposed method and compared it on three independent datasets.
399
The first two datasets consisted of patients with gastric cancer
collected in two hospitals. The third dataset was a public lung
cancer dataset. Associated program code will be made available
for reproducibility.

In this study, we collected data on 879 lung cancer and gastric
cancer patients including CT scans, follow-up information, and
clinical stage information. Survival data included four parts for
patient i (xi, Ti, Ei, Ii): a patient’s clinical variable x, an observed
event time T, a status of event indicator E, and CT images I . The
time was recorded for OS from the operation date to tumor-
related death or final follow-up date. If the status of a patient
(e.g., death) was observed, we called this complete survival data
labeled E = 1. The corresponding time T denotes the duration
from the operation date to tumor-related death. If the status of
a patient was censored, we called this censored survival data
and labeled it as E = 0. The corresponding time T denotes the
duration from the operation date to the final follow-up date.

3.1. Multi-centric gastric cancer datasets

All gastric cancer patients enrolled in this study were patho-
logically confirmed. A total of 459 consecutive gastric cancer pa-
tients were collected from two independent centers: (1) Lanzhou
University Second Hospital (337 cases) and (2) Guangdong Gen-
eral Hospital (122 cases). Baseline demographic and clinicopatho-
logical characteristics were retrospectively collected from the
electronic medical records of each patient. CT imaging data were
obtained from the picture archiving and communication system
(PACS) of each hospital. The characteristics and clinicopathologi-
cal variables used in the training and external validation sets are
shown in Table 1.

We used the software ITK-SNAP (http://www.itksnap.org/) for
segmentation. For each patient, each ROI is defined by using
a tumor-centered rectangular bounding box according to the
delineated boundary.

3.2. Public lung cancer dataset

To further reflect the generalizability and superior perfor-
mance of the proposed model, we evaluated our method and
the state-of-the-art methods on the public lung cancer dataset
(Aerts et al., 2014; Mukherjee et al., 2020). In the public lung

http://www.itksnap.org/
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Table 1
Clinical data for independent three hospitals datasets.
Clinical variables Gastric (center 1) Gastric (center 2) Lung (public)

Number of patients 122 337 422
age (mean ± SD) 58 ± 12 55 ± 9 68 ± 10

Gender (%)
Male 84 (68.9) 254(75.4) 290 (68.7)
Female 38 (31.1) 83 (24.6) 132 (31.3)

Clinical tumor stage (cTstage) (%)
T1 5 (4.1) 0 (0.0) 93 (22.1)
T2 18 (14.8) 57 (16.9) 156 (37.1)
T3 68 (55.7) 183(54.3) 53 (12.6)
T4 31 (25.4) 97 (28.8) 119 (28.3)

Clinical node Nstage (cNstage) (%)
N0 35 (28.7) 82 (24.3) 170 (40.3)
N1 37 (30.3) 71 (21.1) 23 (5.5)
N2 36 (29.5) 70 (20.8) 141 (33.4)
N3 14 (11.5) 114(33.8) 88 (20.9)

Clinical tumor-node-metastasis stage (cTNMstage) (%)
I 24 (19.7) 101(30.0) 133 (31.5)
II 28 (23.0) 147(43.6) 112 (26.5)
III 70 (57.4) 89 (26.4) 177 (41.9)

cancer dataset, data on 422 patients with lung cancer are avail-
able for download. Among them, the CT images of two patients
(numbered LUNG1-85 and LUNG1-192) had fewer layers skipped
and fewer layers (including two tumor sections with small tu-
mor area), which were excluded because they were ineligible
for inclusion in the multi-center data based on the appropriate
inclusion criteria. Finally, 420 patients were used to evaluate the
proposed method and other competing methods. We randomly
divided the data into a validation set (108 patients, IDs from
1–108) and a training set (312 patients, IDs from to 109–422)
according to a fixed serial number and a ratio of one to four pairs.

3.3. Geometrical and clinical metric (assessment criteria)

3.3.1. Concordance index
Our method and existing methods were evaluated using Har-

ell’s concordance index (c-index), which is a widely used indica-
or for performance evaluation (Harrell, Califf, Pryor, Lee, & Rosati,
982), the formula was defined as:(
ĥ, xi

)
=

1
Nobserved Tj>Ti

∑
observed Tj>Ti

1ĥβ (xi)<ĥβ(xj)
. (10)

In the formula, the function of ĥβ (xi) represents risk score for
patient i for each model. The function 1ĥβ (xi)<ĥβ(xj)

= 1 if ĥβ (xi) <

ĥβ

(
xj
)
, and 0 otherwise. The Nobserved Tj>Ti represents the number

of pairs in the order of Tj > Ti, where Ti and Tj are the survival
times for patients i and j, respectively, during the follow-up, and
the Tj is observed. The c-index estimates the probability that, of
two randomly chosen patients, the patient with a higher prognos-
tic score will outlive the patient with a lower prognostic risk score
(Raykar, Steck, Krishnapuram, Dehing-Oberije, & Lambin, 2007).

3.3.2. Hazard ratio
Hazard ratio is a widely used indicator to evaluate the prog-

nostic value of the method to classify patients into different risk
groups (Hernán, 2010). The widely accepted method was adopted
to obtain the cut-off of the median risk score in the training set.
Patients with risk scores lower than the cut-off were classified
into the low-risk and the high-risk group otherwise. Assume that
the output risk score is a risk factor in the low-risk and high-
risk groups. The value of risk score 0 represents low-risk patients,
and 1 represents high-risk patients. The hazard ratio (HR) is
400
formulated as:

HR = λ1 (t, x) /λ2 (t, x) = λ0 (t) ehβ (β1×1)/λ0 (t) ehβ (β1×0)
= eβ1 .

(11)

In this formula, the value of HR represents the ratio of risk
functions between the high-risk group and the low-risk group;
that is, the risk of morbidity in the high-risk group is HR times
than that of the low-risk group. The larger the HR is, the higher
the prognostic value of the method or model is. The clinical
explanation of the regression coefficient β is the logarithm of the
relative risk of the low-risk group and high-risk group covariates
of x. If β > 0, the increase in the value of the corresponding
covariate may be expected to increase the probability of death;
if β < 0, the value of the corresponding covariant will reduce the
probability of death; if β = 0, it indicates that the corresponding
covariables are independent of the occurrence of the event.

3.3.3. Kaplan–Meier (KM) curve
To visualize and represent the prognostic value of the men-

tioned methods, Kaplan–Meier (KM) curves were depicted, show-
ing time t as the horizontal axis and survival Pro(T>t) as the
vertical axis. In our study, we compared two risk groups divided
by the mentioned method for personalized treatment using KM
curves. The difference between the low-risk and high-risk groups
was evaluated by log-rank test (Kleinbaum & Klein, 2012).

3.4. Model performance evaluation

3.4.1. Performance comparison with competing methods
We evaluated the proposed network and state-of-the-art work

(e.g., clinical method (Li et al., 2019), ResNet. (Zhang et al.,
2020), S-net (Jiang et al., 2020)) on gastric cancer datasets and
public lung cancer datasets. We compared existing work with
our proposed method, including clinical method (Li et al., 2019),
deep learning networks of ResNet (Zhang et al., 2020), S-net (Jiang
et al., 2020), VGG16 (Simonyan & Zisserman, 2014), VGG19 (Si-
monyan & Zisserman, 2014), DenseNet (Huang, Liu, Van Der Maate
& Weinberger, 2017), ResNet50 (He, Zhang, Ren, & Sun, 2016),
Inception (Szegedy et al., 2015), InceptionResNet (Szegedy, Ioffe,
Vanhoucke, & Alemi, 2017), NASNetMobile (Zoph, Vasudevan,
Shlens, & Le, 2018), NASNetLarge (Zoph et al., 2018), and Xcep-
tion (Chollet, 2017). As shown in Table 2, in the independent
validation set of gastric cancer patients, our network outper-
formed the state-of-the-art methods for OS prediction of gastric
cancer patients with the highest metrics (c-index: 0.74, 95%
confidence interval (CI): 0.67–0.80, HR: 3.39, 95% CI: 1.53–7.51).
The differences for comparison (KMAP-Net vs. ResNet vs. S-net
= 0.74 vs. 0.62 vs. 0.61) were significant between our method
and other methods (p-value<0.05, except for the clinical model).
Our multi-task network demonstrated an accuracy of 0.81 for
clinical tumor stage prediction (classifying patients into early or
advanced stages) in the validation set. Meanwhile, the accuracy
for clinical node stage prediction (with or without node metas-
tasis) was 0.72 on the validation set. Furthermore, KM curves
demonstrated that KMAP-Net was the most significant model
in stratifying gastric cancer patients at high-risk versus low-risk
(log-rank p = 0.0014, Fig. 5).

In the validation sets of public lung cancer patients, our model
exhibited better performance than the existing methods, with
the highest metrics (c-index: 0.66, 95% CI: 0.60–0.71; HR: 2.10,
95% CI: 1.37–3.21). The accuracies for the secondary tasks of the
clinical tumor and node stages were 0.65 and 0.61, respectively.
Meanwhile, KMAP-Net was the most significant model in strati-
fying lung cancer patients at high-risk versus low-risk (log-rank

p = 0.00054, Fig. 5).
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Table 2
Performance comparison of the KMAP-Net against existing methods of survival risk prediction in human cancer datasets.
Method Gastric cancer Lung public dataset

Primary task of OS Primary task of OS

c-index HR c-index HR

VGG16 (Simonyan & Zisserman, 2014) 0.50 (0.41–0.59) 0.88 (0.51-1.50) 0.55 (0.49–0.61) 1.36 (0.89-2.07)
VGG19 (Simonyan & Zisserman, 2014) 0.62 (0.53–0.70) 1.85 (1.02-3.35) 0.54 (0.48–0.60) 1.28 (0.85-1.94)
DenseNet (Huang et al., 2017) 0.68 (0.61–0.75) 2.29 (1.21-4.36) 0.62 (0.56–0.68) 1.54 (1.03-2.30)
ResNet50 (He et al., 2016) 0.66 (0.58–0.73) 1.72 (0.95-3.12) 0.57 (0.50–0.63) 1.82 (1.20-2.75)
Inception (Szegedy et al., 2015) 0.58 (0.51–0.66) 1.14 (0.66-1.98) 0.61 (0.55–0.67) 1.66 (1.10-2.49)
InceptionResNet (Szegedy et al., 2017) 0.69 (0.62–0.76) 2.31 (1.21-4.39) 0.60 (0.54–0.66) 1.48 (0.99-2.22)
NASNetMobile (Zoph et al., 2018) 0.61 (0.52–0.70) 1.88 (1.03-3.41) 0.62 (0.57–0.68) 1.99 (1.32-3.00)
NASNetLarge (Zoph et al., 2018) 0.67 (0.59–0.75) 2.80 (1.41-5.58) 0.60 (0.54–0.66) 1.54 (1.02-2.32)
Xception (Chollet, 2017) 0.71 (0.64–0.77) 3.16 (1.49-6.71) 0.60 (0.53–0.66) 1.56 (1.03-2.36)
ResNet (Zhang et al., 2020) 0.62 (0.54–0.70) 2.24 (1.18-4.26) 0.56 (0.50–0.62) 1.55 (1.02-2.37)
S-net (Jiang et al., 2020) 0.61 (0.53–0.70) 1.98 (1.04-3.76) 0.47 (0.42–0.52) 0.92 (0.69-1.24)
Clinical stage(Li et al., 2019) 0.70 (0.63–0.76) 2.23 (1.30-3.81) 0.57 (0.50–0.64) 1.56 (1.03-2.36)
Ours 0.74 (0.67–0.80) 3.39 (1.53–7.51) 0.66* (0.60–0.71) 2.10 (1.37–3.21)

Note:Clinical stage represents the clinical survival model constructed by clinical tumor stage, node stage, and TNM stage. Acc-T and Acc-N represent the accuracy
of the prediction of clinical tumor and node stages, respectively. * indicates that our method outperformed other competing methods with a significant difference
(p<0.05). HR: hazard ratio. c-index: concordance index.
Fig. 5. Prognostic value evaluation using Kaplan–Meier (KM) curves of KMAP-Net against existing methods of survival risk prediction in the gastric and lung cancer
atasets, respectively. All the model can stratify all patients into high-risk and low-risk groups. The result shows that KMAP-Net was the most significant model in
tratifying gastric cancer patients at high-risk versus low-risk (log-rank p=0.0014). For each survival curve, a p-value is calculated by the log-rank test, which shows
he differences in prognosis between high-risk and low-risk groups. The median predicted risk score of each method was applied to divide patients into low-risk and
igh-risk groups. For each survival curve, a p-value is calculated by log-rank test, which shows the differences in prognosis between high-risk and low-risk groups.
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.4.2. Effectiveness of our proposed attention modules
To further investigate whether the module proposed in this

tudy is effective, we compared our proposed attention module
ith the backbone (no attention module), state-of-the-art at-
ention modules of Squeeze-and-Excitation Network (SENet) and
BAM on the datasets of gastric cancer and lung cancer patients
Hu et al., 2018; Woo et al., 2018), respectively. In the validation
et of GC patients (Table 3), the baseline (no attention module)
howed the poorest performance (c-index: 0.65, 95% CI: 0.58–
.72; HR: 2.15, 95% CI: 1.17–3.95). The baseline network equipped
ith our attention module showed better performance than the
aseline equipped with SENet, and the baseline equipped with
BAM, respectively (c-index: Ours vs. CBAM vs. SENet: 0.74 vs.
.66 vs. 0.66;HR: 3.39 vs. 2.61 vs. 2.06).
In the public dataset of lung cancer patients, our proposed

ttention module was able to significantly improve the perfor-
ance of the baseline network. The model performance of the
aseline was slightly better than that of random prediction that
401
achieved a c-index of 0.58 (95% CI: 0.52–0.64). When the baseline
was equipped with our proposed attention modules, the perfor-
mance showed a significant incremental margin compared to the
existing modules with the c-index (Ours vs. CBAM vs. SENet =

.66 vs. 0.59 vs. 0.62; HR: 2.10 vs. 1.62 vs. 1.90, and the p-values
or comparison of the c-index were less than 0.05. The KM curves
emonstrated that our module can boost model performance
etter in stratifying gastric and lung cancer patients at high-risk
ersus low-risk (Fig. 6).
To further investigate whether the module proposed in this

tudy is effective, we compared our proposed attention mod-
le with the state-of-the-art attention modules of Squeeze-and-
xcitation Network (SENet) and CBAM on the datasets of gastric
ancer and lung cancer patients (Hu et al., 2018; Woo et al.,
018), respectively. In the validation set of GC patients (Ta-
le 3), the baseline (no attention module) showed the poorest
erformance (c-index: 0.65, 95% CI: 0.58–0.72; HR: 2.15, 95% CI:
.17–3.95). The baseline network equipped with our attention
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Table 3
Performance comparisons of the baselines equipped with different attention modules.

Method
Gastric cancer dataset Lung public dataset

Primary task of OS Secondary tasks Primary task of OS Secondary tasks

c-index HR Acc-T Acc-N c-index HR Acc-T Acc-N

Baseline 0.65 (0.58–0.72) 2.15 (1.17–3.95) 0.73 0.73 0.58 (0.52–0.64) 1.45 (0.96–2.18) 0.62 0.58
Baseline + SENet 0.66 (0.58–0.73) 2.06 (1.10–3.85) 0.81 0.74 0.62 (0.56–0.69) 1.90 (1.24-2.91) 0.62 0.62
Baseline + CBAM 0.66 (0.58–0.73) 2.61 (1.35–5.07) 0.67 0.66 0.59 (0.52–0.65) 1.62 (1.08–2.45) 0.65 0.55
Baseline + SRAM (ours) 0.74 (0.67–0.80) 3.39 (1.53–7.51) 0.81 0.72 0.66 (0.60–0.71) 2.10 (1.37–3.21) 0.65 0.61

Note: The baseline represents a network that is not equipped with the attention module. The SRAM is the proposed attention module.
Fig. 6. Prognostic value evaluation using KM curves of the baselines equipped with different attention modules in the gastric and lung cancer datasets, respectively.
We found that baseline model showed poor performance for OS prediction of lung cancer patients (no significance between high-risk and low-risk groups, log-rank
p=0.076). The results showed that not all the attention modules can boost baseline model performance. The comparisons demonstrated that our proposed attention
module can boost model performance better in stratifying gastric and lung cancer patients at high-risk group versus low-risk group.
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module showed better performance than the baseline equipped
with SENet, and the baseline equipped with CBAM, respectively
(c-index: Ours vs. CBAM vs. SENet: 0.74 vs. 0.66 vs. 0.66;HR: 3.39
vs. 2.61 vs. 2.06). The p-values for comparison of c-index were
less than 0.05.

3.4.3. Effectiveness of different knowledge-guided tasks
To investigate the impact of different clinical stage tasks on

urvival risk prediction performance in a multi-task network, we
esigned ablation studies on different datasets (Table 4). In the
astric cancer dataset, the results showed that the performance
f the network was poor when the network was used only for the
rimary task of survival prediction (c-index = 0.65, 95% CI: 0.58–
.72; HR = 2.06; 95% CI:1.06–4.00). When only one clinical stage
ask was added, the network prediction performance is improved
c-index: TaskOS vs. TaskOS+T vs. TaskOS+N = 0.65 vs. 0.68 vs. 0.66,
R: TaskOS vs. TaskOS+T vs. TaskOS+N = 2.06 vs. 1.68 vs. 2.02).
hen clinical T and N staging were both added into the backbone
etwork, the multi-task network showed the best performance
ith a c-index of 0.74 (95% CI: 0.67–0.80) and HR of 3.39 (95%
I: 1.53–7.51).
In the datasets of lung cancer patients, the results demonstrate

hat single task (TaskOS) learning was poor for survival predic-
ion. When the survival task was combined with clinical T stage
rediction or clinical N stage prediction, the performance was
mproved for survival prediction (c-index: Task vs. Task vs.
OS OS+T

402
askOS+N: 0.51 vs 0.63 vs 0.69; HR: 1.1 vs 1.94 vs 1.47). When the
urvival task was combined with both cTstage and cNstage, the
ulti-task network showed the best performance with c-index
f 0.66 (95% CI: 0.60–0.71) and HR: 2.10 (95% CI: 1.37–3.21). The
M curves also indicated that knowledge-guided tasks can have
n incremental contribution (Fig. 7).

.4.4. Effects of multi-task scaling factor settings
To select the optimal value of scaling factor for survival risk

rediction performance in a multi-task network, we set different
alues of scaling factor (k) on different human cancer datasets
Table 5). We experimentally found that the network is the most
owerful with the scaling factor k of 0.2. The KM curves (Fig. 8)
lso present the best prognostic value of the KMAP-Net when the
caling factor is 0.2.

. Discussion

We propose a collaborative knowledge-guided and task-orie-
ted network of KMAP-Net with a tailored attention mechanism
o improve the accuracy of OS prediction based on CT images.
he main contributions include: (1) we propose an independent
odule equipped with attention mechanism to select and rein-

orce important features in both channel and spatial axes; (2) we
ropose a learning strategy of scale-adaptive inputs to capture
elated features within CT images. We experimentally demon-
trated that the proposed network architecture could improve
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Fig. 7. Prognostic value evaluation using KM curves for performance contribution of each task in the KMAP-Net in the gastric and lung cancer datasets, respectively.
The results showed that single task (TaskOS) learning was poor for OS prediction in lung cancer patients (no significance between high-risk and low-risk groups,
og-rank p=0.64). When the survival task was combined with clinical T stage prediction or clinical N stage prediction, the performance was improved for survival
rediction in lung cancer patients. Both knowledge-guided tasks of clinical T stage prediction and clinical N stage prediction had incremental contribution for OS
rediction in gastric cancer and lung cancer patients.
Table 4
Performance contribution of each task in the KMAP-Net.
Method Gastric cancer dataset Lung public dataset

Primary task of OS Secondary tasks Primary task of OS Secondary tasks

c-index HR Acc-T Acc-N c-index HR Acc-T Acc-N

OS 0.65 (0.58–0.72) 2.06 (1.06–4.00) – – 0.51 (0.44–0.57) 1.10 (0.73–1.68) – –
OS+T 0.68 (0.60–0.76) 1.68 (0.86–3.25) 0.78 – 0.63 (0.56–0.69) 1.94 (1.27–2.96) 0.64 –
OS+N 0.66 (0.59–0.74) 2.02 (1.04–3.93) – 0.66 0.59 (0.53–0.65) 1.47 (0.99–2.20) – 0.60
OS+T+N 0.74 (0.67–0.80) 3.39 (1.53–7.51) 0.81 0.72 0.66 (0.60–0.71) 2.10 (1.37–3.21) 0.65 0.61
Table 5
Performance evaluation of the proposed KMAP-Net with different scaling factors.
Scaling factor k Gastric cancer dataset Lung public dataset

Primary task of OS Secondary tasks Primary task of OS Secondary tasks

c-index HR Acc-T Acc-N c-index HR Acc-T Acc-N

k = 0 0.70 (0.63–0.77) 2.21 (1.11–4.39) 0.81 0.71 0.61 (0.55–0.67) 1.57 (1.04–2.35) 0.64 0.57
k = 0.1 0.72 (0.65–0.79) 2.51 (1.22–5.14) 0.78 0.72 0.64 (0.58–0.70) 1.94 (1.28–2.96) 0.65 0.55
k = 0.2 0.74 (0.67–0.80) 3.39 (1.53–7.51) 0.81 0.72 0.66 (0.60–0.71) 2.10 (1.37–3.21) 0.65 0.61
k = 0.3 0.71 (0.64–0.77) 3.32 (1.32–8.34) 0.81 0.71 0.61 (0.55–0.66) 1.74 (1.15–2.62) 0.60 0.60
the accuracy of risk prediction. Meanwhile, our multi-task archi-
tecture enables gain incremental margins for the target of sur-
vival risk prediction, which indicates that the knowledge-guided
task of cTNM staging prediction can further exploit valuable
information of clinical TNM staging.

For selection of scaling factor k, when we experimentally set
k value as 0.4, we found that the model performance evaluated
in lung cancer dataset showed the poorest HR of 1.56 (1.03–2.35)
compared with the result obtained using scaling factor k range
rom 0 to 0.3 (Table 5). Furthermore, the model performance
valuated in gastric cancer dataset also shows the lowest c-
ndex of 0.69 (0.62–0.77). The results indicate that our proposed
earning strategy based on scale-adaptive inputs can capture rich
nformation from 2D CT images of intratumoral and peritumoral
reas.
403
We experimentally found that the task-oriented network out-
performed the S-net (Jiang et al., 2020), residual network (Zhang
et al., 2020), and TNM staging manual (Li et al., 2019) evalu-
ated in terms of metrics including c-index, HR, and KM curves.
Our results also indicate that the multi-task network showed an
incremental margin compared to the mono-task network for sur-
vival risk prediction, which demonstrates the superiority of the
multi-task network compared with the mono-task network for OS
prediction. Therefore, our results demonstrate that our tailored
multi-task architecture jointly learned representative multi-level
semantic features. Meanwhile, our work proposed a novel strat-
egy using clinical stages as collaborative tasks to train the model.
which demonstrates that multi-task architecture can further ex-
ploit valuable information of clinical TNM staging. The findings
indicated that the knowledge-guided tasks of cTNM staging
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Fig. 8. Prognostic value evaluation using Kaplan–Meier (KM) curves for the effects of multi-task scaling factor settings for prediction in the gastric and lung cancer
atasets, respectively. For each survival curve, a p-value is calculated by log-rank test, which shows the differences in prognosis between high-risk and low-risk
roups. The result showed that when the input of scale-adaptive ROI with a certain peritumoral region can provide useful information for improvement of the model
erformance. The best results were obtained when a parameter of scaling factor k was set as 0.2.
rediction gain incremental margins for the target task of survival
isk prediction. Note that our well-designed network can not
nly improve the accuracy of OS prediction for gastric cancers,
ut can also show prognostic value for lung cancer patients
imultaneously.
Our results show that MTL is helpful in predicting prognosis

han networks based only on CT images without any guidance
rom clinical information. Studies have shown that the intuitive
lausibility for MTL has been proven in three respects. (1) It
ncreases the sample size for training, (2) improves accuracy by
earning new tasks with the guidance of knowledge acquired
y learning related tasks, and (3) reduces the risk of overfitting
Vandenhende, Georgoulis, Proesmans, Dai, & Gool, 2020; Zhang
Yang, 2018). Tang et al. proposed a multi-task network for

rediction of genomic biomarkers and survival time of glioblas-
oma patients, and the results showed that multi-task learning
ould improve the accuracy of OS prediction (Tang et al., 2020).
ur results demonstrate that MTL is able to learn representative
eatures due to its design by utilizing useful information con-
ained in multiple learning tasks to help train a more accurate
achine learning network model for prediction of clinical stages
nd survival risk of gastric and lung cancer patients. Besides, the
esults show that the model performance (c-index) is improved
hen the secondary tasks are integrated. However, single sec-
ndary task of N stage or T stage prediction not boost assessment

criteria of hazard ratio (HR) for overall survival (OS) prognostic
prediction in gastric cancer patients (HR : TaskOS vs TaskOS+T vs
askOS+N: 2.06 vs 1.68 vs 2.02). The results indicate that single
ifferent stage task may not provide stably incremental margin
or OS prediction.

To improve the model performance for OS prediction, we pro-
osed an attention module of SRAM to select important features
nd reinforce them both in channel and spatial axes, which could
emove redundant information and reduce the computational
404
cost of the model. In our ablation study, our designed attention
mechanism SRAM was superior to the popular attention modules
SENet and CBAM for the improvement of OS prediction (Hu
et al., 2018; Woo et al., 2018). Although the attention modules
of SENet and CBAM are significant for detection tasks, they fail to
shrink all of the extracted features and select the representative
information. The main reason is that none of the mentioned
attention networks were equipped with the function of shrinking
all of the features and selecting the representative information
instead of emphasizing or suppressing features. Our proposed
SRAM comprised of CAM and SAM. The modules are designed to
sequentially focus on information in both the channel and spatial
axes so that each convolutional block can find important channels
and regions to emphasize.

Our experiments indicate that the significance of the three
clinical stages in the prognosis analysis for model performance
followed the order: TaskOS+T+N > TaskOS+T > TaskOS+N, which is
consistent with the radiologists’ consensus. We experimentally
demonstrated that our proposed network could provide prog-
nostic value for both lung cancer and gastric cancer patients.
Accurate risk prediction of different cancer species using CT im-
ages has been of increasing interest in survival analysis (Jiang
et al., 2020; Mukherjee et al., 2020). However, these studies only
focused on a single cancer species for survival prediction. Few
studies have focused on exploring a CNN network that can predict
prognosis for both lung and gastric cancer patients using CT
images. Currently, the clinical TNM staging manual is a widely
used guideline for lung and gastric patients, which is based on
valuable information obtained from CT images based on radi-
ologists’ experience. The results confirmed our hypothesis that
the task for stage prediction would improve the accuracy of risk
prediction for OS in lung and gastric cancer patients. Our results
demonstrated that our network was able to learn prognostic
features for both lung and gastric cancer patients with auxiliary
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uidance for prediction of clinical stages. This may be a potential
ool to aid radiologists in decision-making.

The results show that the model performance for OS predic-
ion of gastric cancer patients is better than the performance
or OS prediction of lung cancer patients, which is consistent
ith published work (Huang et al., 2016 and Mukherjee et al.,
020). Mukherjee et al. also found that the accuracy of clinical
odel based on clinical features of age, sex, histology and cancer
tage prediction is also poor (c-indexes of clinical model are 0.69,
.58, 0.55 and 0.52 in four cohorts, respectively). Huang et al.
lso showed that the AJCC staging system had poor C-index of
.629. Actually, the label for clinical tumor stages and node stages
f lung cancer patients are not accurate due to the subjective
adiologists’ evaluation. Therefore, the accuracy for prediction of
umor or node stage for lung cancer is poor. We should note
hat the prediction for tumor or node stage is the secondary task
o improve the prediction of OS, although the poor accuracy in
redicting the tumor or node stage for lung cancer may be not
cceptable clinically.
Our study has some limitations. First, although our network is

valuated on two kinds of cancers, one of limitations of our work
s that our model should be further evaluated in other cancer
atasets, which is necessary to show the model robustness and
eneralization for potentially clinical application. Furthermore,
ur model also should be further tested in other modalities.
esides, the size of each dataset was limited due to the cost
f survival data requisition. In contrast, the performance of the
roposed method should be further validated for other human
ancers. Meanwhile, although we trained our method with multi-
enter datasets, the samples in different clinical stages are unbal-
nced due to scarce survival data with clinical stage information,
hich is not analyzed on the performance of the proposed net-
ork models. We only investigated the importance of clinical
tage as a task to improve the accuracy of risk prediction, and
hether our network can show greater prognostic value with
ther tasks should be explored. Finally, we only investigate the
pplicability of our method for CT images, and more modalities
hould be explored.

. Conclusion

We propose a knowledge-guided multi-task attention pyramid
etwork (KMAP-Net) to improve the model performance of OS
rediction based on CT images in lung and gastric cancer patients.
ur proposed multi-task network equipped with the tailored at-
ention module is a powerful model for improving the accuracy of
isk prediction in lung and gastric patients. The multi-task archi-
ecture exploits its design by capturing and sharing information
rom other related learning tasks, enabling our proposed network
o better generalize our original task and avoid overfitting owing
o the limited sample size. The results indicate that our method is
potential assistive tool for decision-making in clinical practice.
esides, further work should be done to integrate automatic
egmentation network combined with other modality as input to
redict survival risk with different cancer dataset collections.
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