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Purpose: The present study assessed the predictive value of peritumoral regions on three tumor
tasks, and further explored the influence of peritumors with different sizes.
Methods: We retrospectively collected 333 samples of gastrointestinal stromal tumors from the Sec-
ond Affiliated Hospital of Zhejiang University School of Medicine, and 183 samples of gastroin-
testinal stromal tumors from Tianjin Medical University Cancer Hospital. We also collected 211
samples of laryngeal carcinoma and 233 samples of nasopharyngeal carcinoma from the First Affili-
ated Hospital of Jinan University. The tasks of three tumor datasets were risk assessment (gastroin-
testinal stromal tumor), T3/T4 staging prediction (laryngeal carcinoma), and distant metastasis
prediction (nasopharyngeal carcinoma), respectively. First, deep learning and radiomics were respec-
tively used to construct peritumoral models, to study whether the peritumor had predictive value on
three tumor datasets. Furthermore, we defined different sizes peritumors including fixed size (not
considering tumor size) and adaptive size (according to average tumor radius) to explore the influ-
ence of peritumor of different sizes and types of tumors. Finally, we visualized the deep learning
and radiomic models to observe the influence of the peritumor in three datasets.
Results: The performance of intra-peritumors are better than intratumors alone in three datasets.
Specifically, the comparisons of area under receiver operating characteristic curve in the testing
set between intra-peritumoral and intratumoral models are: 0.908 vs 0.873 (P value: 0.037) in
gastrointestinal stromal tumor datasets, 0.796 vs 0.756 (P value: 0.188) in laryngeal carcinoma
datasets and 0.660 vs 0.579 (P value: 0.431) in nasopharyngeal carcinoma datasets. Furthermore,
for gastrointestinal stromal tumor datasets, deep learning is more stable to learn peritumors with
both fixed and adaptive size than radiomics. For laryngeal carcinoma datasets, the intra-
peritumoral radiomic model could make model performance more balanced. For nasopharyngeal
carcinoma datasets, radiomics is also more suitable for modeling peritumors than deep learning.
The size of the peritumor is critical in this task, and only the performance of 1.5 mm–4.5 mm
peritumors is stable.
Conclusions: Our results indicate that peritumors have additional predictive value in three tumor
datasets through deep learning or radiomics. The definitions of the peritumoral region and artificial
intelligence method also have great influence on the performance of the peritumor. © 2021 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.14767]
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Abbreviations
GIST gastrointestinal stromal tumor
LC laryngeal carcinoma
NPC nasopharyngeal carcinoma
IPTR intra- and peritumoral region
IPDL intra- and peritumoral deep learning model
LASSO least absolute shrinkage and selection operator
MRF multiregion radiomic features fused model
IPRD intra- and peritumoral radiomic model
IPCM intra- and peritumoral combination model
CAM class active map
AUC area under receiver operating characteristic curve

1. INTRODUCTION

The peritumoral region or tumor microenvironment consists
of various cell types including endothelial cells, fibroblasts,
immune cells, and other types, as well as extracellular com-
ponents.1,2 The microenvironment determines many aspects
of tumor behavior, including tumor progression, therapeutic
response, and metastasis.3–5 For example, Evans et al.
reported that the peritumoral microenvironment was signifi-
cantly associated with progression and metastasis in head and
neck squamous cell carcinoma.6 Carraro et al. also demon-
strated that the peritumoral microenvironment played an
important role in tumor resistance to neoadjuvant therapy.7

To further improve therapeutic strategy precision, however, a
range of peritumoral regions impacting on different tasks is
required.

Radiomics has been used to mine the intratumor informa-
tion based on many medical images for assisting the tasks of
diagnosis or prognostics.8–11 This strategy involves the
extraction of quantitative manual features from regions of
interest and correlates these features with specific tasks via
machine learning algorithms.12,13 Previous studies have
explored the effect of peritumoral regions using radiomic
methods, and peritumoral radiomic features were found to be
associated with tumor prognosis.14,15 Beig et al. reported that
combining intramodular and perinodular regions improved
model performance beyond that based on intramodular
regions alone in the determining nonsmall cell lung cancer
type.16 Moreover, Braman et al. reported that the peritumoral
environment, determined via radiomic methods, was associ-
ated with treatment response, and that a combination of intra-
tumoral and peritumoral radiomic features could distinguish
between the intrinsic molecular subtypes of HER2 + breast
cancers.17

Although the peritumoral region is helpful for many diag-
nostic and prognostic tasks, the extent of influence of peritu-
moral regions of different sizes or types of tumors has rarely
been studied. Furthermore, for small tumors, if the 30 mm
peritumor is considered as the previous work, the peritumor
is far larger than the intratumor, and even some other tissues
have been introduced, this will cause additional pressure on
the artificial intelligence models. Given these constraints, it is
important to explore the influence of peritumoral regions of

different sizes or types of tumors on methods of artificial
intelligence.

In previous study, the methods for studying the peritu-
moral region almost are radiomics. Furthermore, the com-
bined use of deep learning and radiomics has additional
benefits, as has been reported previously. For instance, Ning
et al. fused radiomic features and deep learning features to
predict malignant potential for gastrointestinal stromal
tumors, and achieved better performance than radiomics or
deep learning alone.18 Given this, it appears that deep learn-
ing is necessary for the analysis of peritumoral regions.

In the present study, we systematically analyzed the pre-
dictive value of peritumoral regions across different tumors
and different tasks (Risk assessment in gastrointestinal stro-
mal tumor datasets; T3/T4 staging prediction in laryngeal car-
cinoma datasets; Distant metastasis prediction in
nasopharyngeal carcinoma datasets) through deep learning
and radiomics. We further explored the influence of peritu-
moral regions by constructing a series of different sizes peri-
tumoral models, the purpose of which is also to study which
method is more suitable for learning peritumor in three tumor
datasets. The study design is illustrated in Fig. 1.

2. MATERIALS AND METHODS

The present study used a retrospective design and was
approved by the institutional review boards of all participat-
ing hospitals. All research was conducted in accordance with
The Code of Ethics of the World Medical Association (Dec-
laration of Helsinki).

We collected imaging datasets of three types of tumors,
namely gastrointestinal stromal tumor (GIST), laryngeal car-
cinoma (LC), and nasopharyngeal carcinoma (NPC) (See
Table I for details). The inclusion criteria are shown in Meth-
ods S1. For GIST datasets, they were collected from two cen-
ters, so the data from hospital1 were used as the training set
and the data from hospital2 were used as the testing set. For
the nasopharyngeal cancer and laryngeal cancer datasets, they
were collected from one hospital, so we divided the datasets
according to the patient diagnostic time, taking 80% of the
data as the training set and the remaining 20% of the data as
the testing set.

We retrospectively collected 333 contrast-enhanced CT
data from the Second Affiliated Hospital of Zhejiang Univer-
sity School of Medicine and 183 GIST from Tianjin Medical
University Cancer Hospital, respectively, between 2009 and
2017. All patients were pathologically confirmed to have
GIST. The task of GIST datasets is risk evaluation. According
to NIH standards, GISTs were classified into four risk levels:
very low, low, medium, and high.19 We further defined very
low, low, and medium as low risk and defined high as high
risk.20 By predicting the preoperative risk of GIST, it can pro-
vide valuable clues for predicting prognosis and assisting per-
sonalized clinical decision-making.

A total of 211 retrospective cases of LC contrast-enhanced
CT data from the First Affiliated Hospital of Jinan University
were collected between 2007 and 2017. All patients were
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pathologically confirmed to have T3 or T4 staging LC after
surgery. The task of LC datasets is T3/T4 stage classification.
Accurate prediction of preoperative T staging of LC can be
beneficial to the decision of total laryngectomy or larynx-pre-
serving treatment.

We retrospectively collected 233 NPC cases of MRI data
from the First Affiliated Hospital of Jinan University between
2007 and 2016. All patients were followed for at least 3 years.
The task of NPC datasets is to predict whether distant metas-
tasis would occur. Distant metastasis was defined as in our
prior work,21 and treatment decisions can be improved by
accurately stratifying the risk of distant metastasis of NPC.

2.A. Segmentation

Tumor regions for the three kinds of tumors included in
the present study were manually segmented by radiologists.

Tumor boundaries were first delineated by a radiologist with
5 yr of experience and then confirmed by a radiologist with
10 yr of experience. Boundaries were delineated using ITK-
snap (version, 3.6) software. The maximum slice of the tumor
was selected. Peritumoral regions are automatically obtained
according to the delineation result for the intratumor region.
We first determined the coordinates of the boundary points
for the peritumoral region, as delineated by the radiologists,
and then expanded these outward according to different
requirements to determine the peritumoral region.

2.B. Definition of peritumor size

In previous studies, to extract peritumoral radiomic fea-
tures, peritumoral regions were defined according to fixed
sizes [e.g., 3–15 mm or 5–30 mm].16,17 We considered the
fact that tumor size as well as morphology vary greatly from

FIG. 1. A diagram depicting the experimental protocols used in this study. (a) is the step of segmentation of intratumoral regions and peritumoral regions in three
tumors. (b) is the step of model construction based deep learning and radiomics. (c) is the step of model evaluation.

TABLE I. The information and datasets split of three tumor datasets.

Training set Time Testing set Time Image modality Task Hospital

GIST 333 2009–2017 / / CT Risk evaluation The Second Affiliated Hospital of Zhejiang
University School of Medicine

GIST / / 183 2011–2017 CT Risk evaluation Tianjin Medical University Cancer Hospital

LC 168 2007–2016 43 2016–2017 CT T3/T4 stage classification The First Affiliated Hospital of Jinan University

NPC 186 2007–2014 47 2014–2016 MR Distant metastasis The First Affiliated Hospital of Jinan University

Abbreviations: GIST = gastrointestinal stromal tumor; LC = laryngeal carcinoma; NPC = nasopharyngeal carcinoma.
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patient to patient and across tumors. So, to study the influ-
ence of different sizes of peritumors in the present experi-
ment, we defined the adaptive peritumor according to the
average tumor radius, and compared it with the fixed peritu-
mor that did not vary with tumor size. The fixed peritumors
were defined by millimeters [Fig. 2(d)], from 1.5 to 9 mm
for LC and NPC, and from 2 to 12 mm for GISTs. The adap-
tive peritumors were defined by the average tumor radius,
from 1/6 radius (r1) to the radius (r6) [Fig. 2(e)], and the
average tumor radius was calculated according to the area of
the tumor.

2.C. Peritumors analyzed through deep learning

After the performance comparison of different networks
(more detail is shown in Tables S10, S12), the classification
network we used is based on the structure of Resnet, that is,
the structure of residual connection, which is a general learn-
ing structure that can fuse the features of shallow layer and
deep layer in the deep neural network.22 And Resnet has
already been widely used in both natural images and medical
images. For medical images, Resnet has shown good perfor-
mance in different tasks, such as, Reddy et al used Resnet to
classify malarial infected cells, and obtained a great perfor-
mance on microscopic cell images,23 and Hu et al used Res-
net as features extraction to extract deep learning features to
construct the model for distinguishing benign and malignant
lesions of breast cancer.24 Therefore, we chose Resnet as the
classification network here. For the three data sets, we used
the same classification network in order to fairly compare the
influence range of the peritumor region. Specifically, we used
the classification network of Resnet18, that is, the network
contains 18 convolution and fully connected layers (more

detail is shown in Table S11). We used CT or MR images to
train the deep learning network, and they are grayscale
images. So, the input size of the classification network is
512 9 512 9 1. After a series of convolution operations,
pooling operations and activation layer, a probability value
was obtained at the end of the network, which was called the
deep learning signature. Its distribution is from 0 to 1. The
closer this value is to 1, the more likely it was predicted as a
positive sample. Similarly, the closer this value is to 0, the
more likely it was predicted as a negative sample.

As tumor region only occupies a very small part of the
whole image, and the background outside the tumor and peri-
tumor are noises for the deep neural network, which is not
conducive to the network’s full learning of the information of
intratumor and peritumor. So, we used intratumor or intra-
peritumor as input by multiplying intratumor mask or intra-
peritumor mask with the original image to remove the back-
ground. After that, we performed data augmentation in the
training set. The specific operation was to rotate the original
image from different angles to get some new samples. The
function of data enhancement is to increase the amount of
data used to train the neural network, and to improve the gen-
eralization performance of the model. When training the net-
work, in order to fairly compare the performance of
intratumor, peritumor, and intra-peritumor, we used the same
hyperparameters to train these three networks. The network
optimizer is root mean square prop (RMSprop); Learning rate
is 10�6; Learning rate attenuation is 10�7; And batchsize is 4.

2.D. Peritumors analyzed through radiomics

In order to ensure the fairness of comparison, features
extraction and features selection methods of all radiomic

FIG. 2. A schematic diagram representing the definition of the peritumoral region. (a), the slices with the maximum tumor area were selected. (b), the intratu-
moral regions were segmented by expert radiologists. (c), the peritumoral regions were auto extended using an algorithm. (d), the peritumors with fixed sizes.
(e), the peritumors with adapted sizes.
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models were consistent. For each region, 107 radiomic features
were extracted, each of which had three kinds of features: his-
togram, shape, and texture. The feature selection methods used
were least absolute shrinkage and selection operator (LASSO)
and multivariate analysis. Logistics was further used to fit mod-
els with significant radiomic features. Similar to the deep learn-
ing model, the radiomic features are fitted through the
Logistics to obtain a probability value of 0–1 distribution
range, which was called radiomic signature. We used the radio-
mic signature to calculate the performance of the model.

2.E. Combination of deep learning signature and
radiomic signature

Deep learning is an end-to-end learning approach for
images, and radiomics is the method used to analyze manu-
ally defined features extracted from region of interest. We
fused the results of two methods to study if there were further
improvements. Specifically, deep learning signature was
fused with radiomic signature, both of which are probability
values distributed in a range from 0 to 1, so they could be
regarded as two features. We used a Logistics model to fit
these two features, to obtain the final combination model.

2.F. Model evaluation and visualization

For the three tasks, the area under receiver operating char-
acteristic curve (AUC), sensitivity (Sen) and specificity (Spe)
were used to evaluate the model performance. To measure the
robustness of the model, we also calculated the 95% confi-
dence intervals for each evaluation metrics. We used the
Delong Test to compare the performance differences between
the two models, and P < 0.05 was considered to have a sig-
nificant difference.

To demonstrate how the model learns peritumor, we visu-
alized intratumoral and intra-peritumoral models. The class
active maps were used to visualize the deep learning model,
which was obtained by calculating the average gradient
change of the input image to the label.25,26 The greater the
active value of the region, the greater the gradient of the

model in the region. For the radiomic model, different fea-
tures have different meanings, so they were visualized in dif-
ferent ways. Specifically, for shape features, we used the
white arrow to signal; For histogram features, we used the
specific value or statistical histogram to display; And for tex-
ture features, we calculated the neighborhood features of each
point in the region of interest as the eigenvalues of that point,
then the color map of texture features were obtained through
color mapping (more detail is shown in Methods S2).

2.G. Statistical analysis

The deep learning network used in this study was created
using the Keras framework (version, 2.1.6) based on Ten-
sorFlow (version, 1.10.1). Radiomic features were extracted
using the pyradiomics library (version, 2.1.2) in Python (ver-
sion, 3.6). Radiomic models were constructed using R lan-
guage (version, 1.10.1). Experimental results were visualized
using the matplotlib library (version, 3.1.1) in Python. The
evaluate matrices of AUC, sensitivity, specificity, and confi-
dence intervals were calculated using pROC (1.12.1) and
reportROC (3.2) packages in R language.

3. RESULTS

3.A. Performance of intratumors and peritumors

For GIST datasets, the results are shown in Table II. The
performance of the intratumoral deep learning model in the
testing set are: AUC, 0.873, Sen, 0.635, and Spe, 0.877. The
performance of the intra-peritumoral deep learning model in
the testing set are: AUC, 0.908, Sen, 0.730, and Spe, 0.895.
The statistical difference of the AUC between these two mod-
els is 0.037. The AUC of the intra-peritumoral model in the
testing set is significantly better than intratumor. And the Sen
improved by nearly 10%. For the radiomic model, although
there was no significant difference between the performance
of the intratumoral model and the intra-peritumoral model
(AUC: 0.892 vs 0.890, P: 0.957), the Sen and Spe of the

TABLE II. The performance of the peritumor in the GIST datasets.

Testing set

P valueAUC Sensitivity Specificity

Intratumor

Deep learning 0.873 [0.820–0.926] 0.635 [0.551–0.719] 0.877 [0.792–0.962] \

Radiomics 0.890 [0.841–0.934] 0.952 [0.915–0.990] 0.421 [0.293–0.549] \

Peritumor

Deep learning 0.840 [0.781–0.898] 0.571 [0.485–0.658] 0.895 [0.815–0.974] \

Radiomics 0.893 [0.845–0.941] 0.651 [0.568–0.734] 0.965 [0.917–1.000] \

Intra-peritumor

Deep learning 0.908 [0.863–0.953] 0.730 [0.653–0.808] 0.895 [0.815–0.974] 0.037

Radiomic 0.892 [0.844–0.940] 0.754 [0.679–0.829] 0.930 [0.864–0.996] 0.957

Deep learning + Radiomics 0.891 [0.844–0.938] 0.730 [0.653–0.808] 0.930 [0.864–0.996]
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intra-peritumoral model (Sen: 0.754, Spe: 0.930) were more
balanced than intratumoral model (Sen: 0.952, Spe: 0.421).

For NPC datasets, the results are shown in Table III. The
performance of intra-peritumoral deep learning and radiomic
models are both better than intratumor in the testing set. In
this task, the radiomic method is more suitable to learn peri-
tumor. The Sen of intratumoral deep learning model is 0.312,
and the Spe of intratumor radiomic model is 0.400. Such
results indicate that the models cannot effectively distinguish
between two classes of samples, and the results of model tend
to be one class. Although intra-peritumoral deep learning
model has some promotion in the AUC performance, the ele-
vation to Sen is too faint. However, the intra-peritumor radio-
mic model can greatly improve Spe performance (Sen, 0.625;
Spe, 0.667), thus effectively improving the generalization per-
formance.

For LC datasets, the results are shown in Table IV. As for
the deep learning method, the performance of intra-peritumor
(AUC, 0.796; Sen, 0.667; Spe, 0.750) is slightly better than
intratumor (AUC, 0.756; Sen, 0.593; Spe, 0.938) in the test-
ing set. As for the performance of intra-peritumoral radiomic
model and intratumoral radiomic model, although the AUC
did not show any improvement, the results of Sen and Spe

became more consistent (Sen, 0.741; Spe, 0.750). The Sen
and Spe of intratumoral radiomic model are 0.630 and 0.875,
respectively. This means that most of the samples were pre-
dicted to be negative, which is not good for the generalization
performance.

3.B. Performance of different sizes peritumors

We compared the effects of a series of peritumors with
different sizes on the two methods of deep learning and
radiomics. The purpose of this experiment was to explore
influence of peritumors for different tumors and different
tasks, and to study the strengths and weaknesses of deep
learning and radiomics in learning different size peritu-
mors.

For the GIST datasets, Fig. 3 compares the performance
of different peritumor models, and the p values of each pair
models. The specific results are in Tables S1, S2. It can be
seen from Fig. 3 that for deep learning, the performance of
the intra-peritumor models is relatively stable with the expan-
sion of the peritumor, and most of the intra-peritumor models
are better than the intratumor. However, for radiomics, with
the change of peritumors, the performance of the intra-

TABLE III. The performance of the peritumor in the NPC datasets.

Testing set

P valueAUC Sensitivity Specificity

Intratumor

Deep learning 0.579 [0.397–0.761] 0.312 [0.152–0.473] 0.800 [0.598–1.000] \

Radiomics 0.608 [0.443–0.773] 0.688 [0.527–0.848] 0.400 [0.152–0.648] \

Peritumor

Deep learning 0.581 [0.406–0.757] 0.688 [0.527–0.848] 0.400 [0.152–0.648] \

Radiomics 0.657 [0.490–0.825] 0.656 [0.492–0.821] 0.667 [0.428–0.905] \

Intra-peritumor

Deep learning 0.660 [0.484–0.837] 0.344 [0.179–0.508] 0.800 [0.598–1.000] 0.431

Radiomics 0.648 [0.481–0.815] 0.625 [0.457–0.793] 0.667 [0.428–0.905] 0.540

Deep learning + Radiomics 0.631 [0.463–0.799] 0.625 [0.457–0.793] 0.667 [0.428–0.905]

TABLE IV. The performance of the peritumor in the LC datasets.

Testing set

P valueAUC Sensitivity Specificity

Intratumor

Deep learning 0.756 [0.606–0.903] 0.593 [0.407–0.778] 0.938 [0.819–1.000] \

Radiomics 0.796 [0.663–0.930] 0.630 [0.447–0.812] 0.875 [0.713–1.000] \

Peritumor

Deep learning 0.745 [0.588–0.903] 0.556 [0.368–0.743] 0.875 [0.713–1.000] \

Radiomics 0.674 [0.501–0.846] 0.481 [0.293–0.670] 0.812 [0.621–1.000] \

Intra-peritumor

Deep learning 0.796 [0.657–0.936] 0.667 [0.489–0.844] 0.750 [0.538–0.962] 0.188

Radiomics 0.764 [0.614–0.914] 0.741 [0.575–0.906] 0.750 [0.538–0.962] 0.236

Deep learning + Radiomics 0.771 [0.622–0.920] 0.741 [0.575–0.906] 0.750 [0.538–0.962]
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peritumor models varies greatly, and there is a large gap
between the Sen and Spe of the models. This indicates that
for the GIST datasets, deep learning is a better way to learn
the peritumor region, and has relatively stable performance in
different sizes of peritumors.

For NPC datasets, Fig. 4 compares the performance of dif-
ferent peritumor models, and specific results are in
Tables S3, S4. According to Fig. 4, with the change of peri-
tumor, the Spe value of many radiomic models become 0,
which means that the models predict all samples in the testing
set into one class. And the model has no discrimination abil-
ity at all, or the Spe values are much higher than Sen (deep
learning model with fixed size peritumor). This means that
for the NPC datasets, the definition of peritumor size is very
important for peritumor performance, and the smaller peritu-
mor is more stable. In addition, only the radiomic models
based on fixed size peritumors are stable, which can reduce
the gap between Spe and Sen. This indicates that for NPC
datasets, radiomics is more suitable for modeling peritumors
than deep learning.

For LC datasets, Fig. 5 compares the performance of dif-
ferent peritumor models, and specific results are in
Tables S5, S6. In the LC datasets, the fixed and adaptive size
peritumors both show stable performance in deep learning
and radiomic models. However, for the deep learning method,
the Spe of the intratumor model is much higher than the Sen,
and the intra-peritumoral model cannot effectively improve
this gap. For the radiomic method, most of the peritumor
models can make the SEN, SPE, and AUC of the model tend
to be at the same level, so that the performance of the model
is more balanced. This indicates that for the LC datasets,
radiomics is more suitable for modeling of peritumors in this
task than deep learning.

The radiomic features used in each radiomic model are
displayed in Tables S7, S8, S9. Many intra-peritumoral mod-
els used the same features as the intratumoral model, but their
performance are superior. These results indicated that the per-
itumors have additional valuable information and can
improve the stability of the radiomic features. For GIST data-
sets, “Maximum_2D_Diameter_Row” is the most stable fea-
ture, which represents the size of tumor. For NPC datasets,
“Shape_Maximum_2D_Diameter_Row” and “Tex-
ture_Gldm_Large_Dependence_Low_Gray_Level_Empha-
sis” are the most stable features. Although these two features
were used in many intra-peritumoral models, the model per-
formance collapses with the expansion of peritumor. This
indicates that the excessively large peritumor would introduce
extra noise, which makes the radiomic features lose the abil-
ity to characterize the tumor. For LC datasets, “Shape_Elon-
gation” and “Texture_Glszm_Zone_Percentage” were almost
used in all intra-peritumoral models. In this task, the perfor-
mance of radiomic features is stable with the expansion of
peritumor.

3.C. Model visualization

For GIST datasets, the deep learning and radiomic models are
visualized in Fig. 6. First, the red arrows indicate the regions of
interest (highlighted regions) of the deep learning model, that is,
the regions that contributes a lot to the model result. From the
regions indicated by the arrows, a large part of the weights of the
deep learning model falls on the margins of the tumor. This indi-
cates that the tumor marginal region has a greater impact on the
results of deep learning model. Second, the intratumoral radiomic
model was constructed by two shape features: “Shape_Maxi-
mum_2D_Diameter_Row” and “Shape_Sphericity.” They

FIG. 3. The performance of peritumors with different sizes in GIST datasets.
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respectively represent the size and sphericity of the tumor. The
larger and more irregular of the tumor may bring the greater risk.
As for intra-peritumoral model, three texture features were used,
including “Texture_Glszm_GrayLevel_Non_Uniformity,” “Tex-
ture_Glszm_Zone_Entropy,” and “Texture_Ngtdm_Contrast.” It
can be seen from Fig. 6 that, unlike the intratumoral shape fea-
tures, the features used in intra-peritumoral model represent the

gray intensity and regional texture changes of the intra-peritumor,
especially at the marginal region of the tumor.

For NPC datasets, the deep learning and radiomic models
are visualized in Fig. 7. Similar to GIST datasets, peritumor
occupies the main weights of the deep learning model. How-
ever, due to the limited amount of data, the intra-peritumor
deep learning model did not show obvious advantages than

FIG. 4. The performance of peritumors with different sizes in NPC datasets.

FIG. 5. The performance of peritumors with different sizes in LC datasets.
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intratumor alone. Both the intratumoral and intra-peritumoral
radiomic model only contained a shape feature: “Shape_Max-
imum_2D_Diameter_Row.” This shows that in our datasets,
for the radiomic model, the maximum diameter of the tumor
is the largest factor that affects the distant metastasis of NPC.

For LC datasets, the deep learning and radiomic models
are visualized in Fig. 8. There are obvious differences
between the regions of high weights in the intratumoral and
intra-peritumoral models, which may be the reason causing
the imbalanced performance of deep learning model. The sig-
nificant radiomic features are stable in intratumors and intra-
peritumors, including a shape feature ("Shape_Elongation")
and a texture feature ("Texture_Glszm_Zone_Percentage").
The shape feature represents the elongation rate of the tumor,
and the texture feature represents the regional texture rough-
ness of the tumor. This indicates that irregularly shaped and
rough-textured laryngeal cancer may bring a higher risk of
T4 staging.

4. DISCUSSION

In the present study, we investigated the performance of
different peritumors through deep learning and radiomic
methods. Our experimental results demonstrated that the

peritumors have additional predictive value relative to intratu-
mors in three tumor datasets. Furthermore, the definition of
peritumor and artificial intelligence methods (deep learning
or radiomics) also affect the performance of peritumor.

Previous studies explored how different definitions of the
peritumoral region might influence the performance of differ-
ent models. For instance, Beig et al. combined intranodular
and different perinodular region radiomic features to distin-
guish between lung nonsmall cell lung cancer adenocarcino-
mas and benign granulomas. They included a 30 mm
perinodular region, divided into 5 mm rings, and found that
the best features were those extracted from a perinodular of
5 mm beyond the tumor.16 Braman et al. explored the perfor-
mance of different sizes of peritumors ranging from 3 to
15 mm for predicting the response to treatment in breast can-
cer cases, and found that the radiomic features from 3 mm
peritumor were significantly associated with the density of
tumor-infiltrating lymphocytes.17 The results of our experi-
ments are consistent with them. The peritumors have addi-
tional predictive value in three tumor datasets, especially for
GIST datasets, the AUC of the intra-peritumor deep learning
model is significantly better than intratumor alone. And the
size of peritumor is also important for effectively characteriz-
ing the intra-peritumor with tumor task. As for LC datasets,

FIG. 6. The class active map of the deep learning model and features color map of the radiomic model in GIST datasets. (a), represents the segmentation of the
tumor. In (b) and (c), the left column represents the intratumoral models, and the right column represents the intra-peritumoral models.
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when the peritumor is too large, the model performance
would collapse, only the peritumor ranging from 1.5 to
4.5 mm could get stable performance through radiomic
method. This indicated that, although the peritumor indeed
has a positive influence in the three tumor tasks, the peritu-
mor with a suitable size would make the model more stable
and balanced.

At present, radiomics and deep learning are two com-
monly used methods for the quantitative analysis of tumors.
For the radiomic, from the concept to a wide range of appli-
cations is used for the quantitative analysis of the
tumor.8,9,11,12 Specifically, high-dimensional artificially
defined features, such as shape, histogram, and texture

features, are extracted from regions of interest to represent
tumor information, many of which are difficult to be
observed by the naked eye. As for deep learning, after the
success in natural images, it was widely applied to various
fields, including medical imaging.18,22–24 Deep neural net-
work is an end-to-end structure. For tumor diagnosis tasks,
images or regions of interest are directly taken as the input of
the network, and the correlation between images and target
tasks is automatically learned by optimizing the loss function.
In our results, radiomics and deep learning have their
strengths and weakness in the three datasets. For the GIST
dataset, there are a total of 561 cases of data from two hospi-
tals, and deep learning is more stable according to Fig. 3. As

FIG. 7. The class active map of the deep learning model and features color map of the radiomic model in NPC datasets. (a), represents the segmentation of the
tumor. In (b) and (c), the left column represents the intratumoral models, and the right column represents the intra-peritumoral models.

FIG. 8. The class active map of the deep learning model and features color map of the radiomic model in LC datasets. (a), represents the segmentation of the
tumor. In (b) and (c), the left column represents the intratumoral models, and the right column represents the intra-peritumoral models.
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can be seen from the Table S7, with the change of the peritu-
mor range, the significant features after features selection
used in radiomic model changed greatly, resulting in the
instability of the radiomic model. There may be some devia-
tions in the larger datasets from different centers. Compared
with radiomics, deep learning seems more resistant to such
deviations. However, for LC and NPC datasets, radiomic
method has better performance. These two datasets are rela-
tively small, with 211 and 233 cases, respectively. The fea-
tures used in the radiomic models with different peritumors
are highly consistent, which indicates that peritumor radiomic
features are very stable in small datasets. As far as deep learn-
ing is concerned, it is known that it has a huge demand for
data volume, which usually leads to a large performance loss
in a small dataset. Therefore, for small data, it may be more
appropriate to use radiomics to analyze the peritumor.

The performance of Deep learning + Radiomics models
on intra-peritumor has not improved compared to deep
learning alone or radiomics alone. We believe that this
may be caused by insufficient performance of one of the
two models. Such as, for the GIST dataset, the perfor-
mance of radiomic models in different intra-peritumors is
instability; For NPC and LC datasets, the deep learning
model has not achieved good performance due to the lim-
ited training data. When the performance of the two mod-
els is stable, and the results are complementary, model
fusion may bring further performance gains. But insuffi-
cient performance of one of the models cannot improve
the performance of the fusion model.

The present study also has some limitations which might
be addressed by future work. First, although three tasks were
analyzed, the datasets were small. In future work, more data
(including other countries) should be collected to further ver-
ify the performance of peritumor. Second, the maximum slice
of the tumor was directly used for analysis, not including the
multislices of the tumor. In future work, we intend to study
the strengths and weaknesses of maximum slice and multi-
slices of the tumor for analyzing the peritumor.

In conclusion, the present study demonstrated that peritu-
moral regions have additional predictive value in three tumor
datasets. The definition of the peritumor and artificial intelli-
gence methods also have great influence on the performance
of peritumor.
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