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Abstract
Objectives To investigate whether CT-based radiomics signa-
ture can predict KRAS/NRAS/BRAF mutations in colorectal
cancer (CRC).
Methods This retrospective study consisted of a primary cohort
(n = 61) and a validation cohort (n = 56) with pathologically
confirmed CRC. Patients underwent KRAS/NRAS/BRAF muta-
tion tests and contrast-enhanced CT before treatment. A total of
346 radiomics features were extracted from portal venous-phase
CT images of the entire primary tumour. Associations between
the genetic mutations and clinical background, tumour staging,
and histological differentiation were assessed using univariate
analysis. RELIEFF and support vector machine methods were
performed to select key features and build a radiomics signature.
Results The radiomics signature was significantly associated
with KRAS/NRAS/BRAF mutations (P < 0.001). The area un-
der the curve, sensitivity, and specificity for predicting KRAS/
NRAS/BRAF mutations were 0.869, 0.757, and 0.833 in the

primary cohort, respectively, while they were 0.829, 0.686,
and 0.857 in the validation cohort, respectively. Clinical back-
ground, tumour staging, and histological differentiation were
not associated with KRAS/NRAS/BRAF mutations in both co-
horts (P>0.05).
Conclusions The proposed CT-based radiomics signature is
associated with KRAS/NRAS/BRAF mutations. CT may be
useful for analysis of tumour genotype in CRC and thus help-
ful to determine therapeutic strategies.
Key Points
• Key features were extracted from CT images of the primary
colorectal tumour.

• The proposed radiomics signature was significantly associ-
ated with KRAS/NRAS/BRAF mutations.

• In the primary cohort, the proposed radiomics signature
predicted mutations.

• Clinical background, tumour staging, and histological dif-
ferentiation were unable to predict mutations.
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Abbreviations and Acronyms
AFP Alpha fetoprotein
AUC Area under curve
CA199 Carbohydrate antigen 199
CA242 Carbohydrate antigen 242
CA724 Carbohydrate antigen 724
CEA Carcinoembryonic antigen
CI Confidence interval
CRC Colorectal cancer
CT Computed tomography
EGFR Epidermal growth factor

receptor
18F-FDG PET/CT Positron emession

tomography/computerd
tomography with
18F-fluorodexyglucose

FFPE Formalin-fixed
paraffin- embedded

GLCM Gray-level co-occurrence
matrix

GLRLM Gray-level run-length matrix
ICCs Intra-/inter-class correlation

coefficients
NCCN Nationgal comprehensive

cancer network
NGS Next-generation sequencing
OR Odds ratio
PACS Picture archiving and

communication system
ROC Receiver operating

characteristic
SUV Standardized uptake value
TPS Tissue polypeptide specific

antigen
3D Three-dimensional

Introduction

Treatments for patients with colorectal cancer have undergone
significant advances during the past decades [1, 2]. Recently,
advances in therapeutic strategies are playing a crucial role in
the survival improvement [3, 4]. Genetic profiling of tumours
is a powerful tool that allows personalized treatment through
the development of targeted therapies [5]. Since 2016, the
National Comprehensive Cancer Network (NCCN) guidelines
have been recommending that all patients with suspected or
proven metastatic colorectal cancer should have tumour tissue
genotyped for KRAS/NRAS/BRAF mutations because either of

these mutations predicts a lack of response to cetuximab and
panitumumab, which are anti-epidermal growth factor receptor
(EGFR) monoclonal antibodies [6–9]. Therefore, at pre-
treatment or during treatment, identification of KRAS/NRAS/
BRAF mutation status is crucial to predict the therapeutic effect
and determine individual therapeutic strategies for patients with
colorectal cancer. The pathologic mutation test for genetic status
in colorectal cancer is the gold standard in clinical practice.
However, archival tissue may not represent genotypic changes
that have occurred since the tissue was taken, especially after
multiple lines of treatment, and archival samples may be limited
by intratumoral heterogeneity. Thus, the development of a meth-
od, which can be noninvasive, conveniently repeatable and
may reflect intratumoral heterogeneity to help identify genetic
mutation status, is of significance to provide an adjunct to
histologic assessment in real time. Analysis of circulating
DNA could be a noninvasive method for genotype analysis
in colorectal cancer [10]. However, the possibility that insuf-
ficient quantity of DNAwas released into circulation to enable
detection may be a shortcoming for this approach. Imaging
examination could display the whole tumour and may have
the potential to supplement genotype analysis.

Since computed tomography (CT) is recommended by the
NCCN guidelines as the preferred imaging examination for co-
lorectal cancer in clinical practice, we chose CT-based image
features for analysis in the current research. Several previous
studies have used positron emission tomography/CT with 18F-
fluorodeoxyglucose (18F-FDG PET/CT) or/and CT-based tex-
ture to assess the associations with genetic mutations (KRAS,
KRAS/BRAF, or KRAS/NRAS) in colorectal cancer, metastatic
colorectal cancer, or rectal cancer [11–17], but with conflicting
results. Additionally, these studies analysed only one or two
KRAS/NRAS/BRAF genes and lacked validation. Otherwise,
NCCN guidelines (version 1.2017) recommended that PET/CT
should only be used to evaluate an equivocal finding on a CTor
in patients with strong contraindications to CTor in patients with
potentially surgically curable M1 disease. Therefore, we just
used CT, included three genes (KRAS/NRAS/BRAF), and our
study groups consisted of a primary cohort and a validation
cohort to investigate whether a CT-based signature can provide
genetic mutation information in addition to routine diagnosis.

Radiomics is an emerging technique that converts medical
images into a high-dimensional minable feature space and
uses data mining for cancer diagnosis and prognosis
[18–21]. The combined analysis of a panel of multiple fea-
tures, which are usually applied as radiomics signatures, has
been used in the prediction or prognosis of colorectal cancer,
head and neck cancer, and lung cancer [22–24]. To the best of
our knowledge, there is no research on whether a CT-based
radiomics signature is associated with KRAS/NRAS/BRAF
mutation status in colorectal cancer. Therefore, the aim of
the study was to investigate whether a CT-based radiomics
signature could predict KRAS/NRAS/BRAF mutations.
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Materials and Methods

Patients

Estimation of sample size is described in Supplementary
Information 1.

This study was approved by the medical ethics committee
of our institution. For this retrospective study, the requirement
of informed consent was waived. A total of 117 patients were
identified for analysis. They were all pathologically confirmed
colorectal cancer, took KRAS/NRAS/BRAF mutation tests and
underwent contrast-enhanced CT with a reconstructed slice
thickness of 1.25 mm before treatment from November 2013
to May 2017 (Supplementary Information 2 and 5.1).

The patients were divided into two cohorts according to
chronological order: a primary cohort (n = 61, November
2013–July 2015) and a validation cohort (n = 57, August
2015–May 2017). The primary cohort consisted of 41 men
and 20 women (mean age, 54.38 years; age range, 25–76
years), while the validation cohort comprised 34 men and 22
women (mean age, 53.16 years; age range, 25–73 years).

Clinical and pathologic characteristics

Clinical and pathologic characteristics consisted of age, gen-
der, tumour size, tumour location, differentiation degree of
tumour, TNM stage (tumour, node, and metastases), smoking
history, hypertension history, family history of cancer, and
d iabe tes h i s to ry. Labora to ry ana lys i s inc luded
carcinoembryonic antigen (CEA), carbohydrate antigen 242
(CA242), alpha fetoprotein (AFP), carbohydrate antigen 724
(CA724), carbohydrate antigen 199 (CA199), and tissue poly-
peptide specific antigen (TPS), which had threshold values of
5 ng/mL, 20 U/mL, 7 ng/mL, 9.8 U/mL, 37 U/mL, and 55

mU/mL, respectively, according to laboratory testing instruc-
tions (Roche, Basel, Switzerland).

KRAS/NRAS/BRAF mutation analysis

DNA was extracted from formalin-fixed paraffin-embedded
(FFPE) tumour sections using the QIAamp DNA FFPE
Tissue Kit (Qiagen). Mutations of KRAS (exons 2, 3, and 4),
NRAS (exons 2, 3, and 4), and BRAF (V600E) were analysed
by a next-generation sequencing (NGS) method.

Image acquisition and segmentation

All patients underwent contrast-enhanced abdominal and pelvic
CT using one of two 64-detector row spiral CT systems. All
portal venous-phase CT images were retrieved from a picture
archiving and communication system (PACS; CAREstream
Medical Ltd.) for image segmentation and analysis. The CT
image acquisition, segmentation and intra-/inter-reader agree-
ment evaluation are described in Supplementary Information 3.

Radiomics feature extraction and analysis

A total of 346 3D features from primary tumours were extract-
ed, which were divided into four groups: (I) shape features, (II)
grey-level histogram features, (III) grey-level co-occurrencema-
trix (GLCM) features, and (IV) grey-level run-length matrix
(GLRLM) features (Fig. 1). The radiomics feature extraction
methodology is described in Supplementary Information 4.
Feature selection and modelling were based on the primary
cohort. The processes of this section are listed in Table 1.

Firstly, based on the different groups of the independent
segmentations of 30 patients, the intra-/inter-class correlation

Fig. 1 Radiomics modelling and analysis workflow with two examples
of CT images and tumour segmentation. (a, b) One patient with rectal
cancer, male, 55 years old. The red area in (b) represents the maximum
cross-sectional area of the tumour on this image; the green area in (b) is

excluded, which is the air area in the tumour centre. (c, d) Another patient
with sigmoid colon cancer, female, 53 years old. The red area in (d)
represents the maximum cross-sectional area of the tumour on this image
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coefficients (ICCs) were used to estimate the robustness of the
features [25]. The stable features with ICCs of > 0.8 remained.

Secondly, univariate analysis was performed for each fea-
ture. Features with P values < 0.1 were considered to be as-
sociated with genetic mutations [26] and were selected into
the following process.

Thirdly, five feature sets were established for model build-
ing. The five feature sets included: (I) shape feature set, (II)
grey-level histogram feature set, (III) GLCM feature set, (IV)
GLRLM feature set, and (V) the overall feature set. The
RELIEFF algorithm was used to select features on each fea-
ture set [27]. To avoid model overfitting, the rule of thumb is
that the number of predictors should remain within 1/10–1/3
of the sample size in each group of the primary cohort.
Therefore, the potential feature set was limited to nomore than
three for prediction in this study (37 mutation-positive patients
and 24 mutation-negative patients in the primary cohort).

Finally, we used a support vector machine (SVM) algo-
rithm for radiomics signature modelling on each feature set.
A sequential minimal optimization algorithmwas used to train
the model [28], a radial basis function was used as the kernel
function, and a 1000 times 10-fold cross-validation was used
in the training process to prevent overfitting and to select the
model with the best performance.

The process of radiomics feature extraction and analysis
was performed in MATLAB 2014a (MathWorks), including
the Feature Selection Library (FSLib) toolbox [29].

Statistics

Univariate analysis was used to assess the relationship between
the genetic mutation status and the characteristics of patients,
including radiomics features and clinical characteristics. The
differences in variables between the patients in different groups
were assessed using t-test or the Mann-Whitney U test for con-
tinuous variables and the chi-square test for categorical vari-
ables. The radiomics signature was analysed using the receiver
operating characteristic (ROC) curve. An odds ratio (OR) was

used to indicate the degree of risk when the classification result
was 1. The statistical power of the chi-square test in this study
was estimated using the STPLAN software. Kappa tests and the
Bland-Altman plots were used to determine intra-/inter-reader
agreement. The 95% confidence interval (CI) for the limits of
agreement was also calculated. Statistical analysis was conduct-
ed with R software (version 3.0.1; http://www.Rproject.org) and
MATLAB. A two-sided P value of < 0.05 was used as the
criterion to indicate a statistically significant difference.

Results

Clinical and pathologic characteristics

Based on the results of KRAS/NRAS/BRAF mutations, the pa-
tients were classified into two groups: the mutated group (ei-
ther mutated KRAS, NRAS, or BRAF) and the wild-type group
(nonmutated KRAS, NRAS, and BRAF). The distribution of
genetic mutations in the primary and validation cohorts are
shown in Table 2. There were no demographic differences in
terms of age, gender, and genetic mutation status between the
primary and validation cohorts (Supplementary Information
6.1).

Patient and tumour characteristics in the primary and
validation cohorts are listed in Table 3. There were no
significant differences between the mutated group and the
wild-type group in either cohort in terms of tumour size,
tumour location, histologic type, TNM stage (including T,
N, and M categories), smoking history, hypertension his-
tory, family history of cancer, and diabetes history. There
were significant differences in gender and age between the
two groups in the primary cohort (P values of < 0.05), but
they were not confirmed in the validation cohort. There
were also no significant differences between the mutated
group and the wild-type group in both cohorts in terms of
CEA, CA242, AFP, CA724, CA199, and TPS levels
(Supplementary Information 6.2).

Table 1 Post-processing workflow in this study

Step Description Software Processing time

Image filtration Multiple-filtering to implement image smoothing and image difference. MATLAB with in-house soft-
ware

a few seconds

Feature generation Extracting a total of 346 3D features belonging to 4 groups MATLAB with in-house soft-
ware

about one
minute

Reproducibility
analysis

Estimating the intra-/inter-reader agreement of features R with "psych" package a few seconds

Univariate analysis Evaluating if there are potential associations between features and genetic
mutations

R with "stats" package a few seconds

Feature ranking Finding the features having the top powerful predictive ability in each feature
set

MATLAB with FSLib toolbox a few seconds

Signature modeling Building and selecting the SVMmodels via multiple 10-fold cross validation MATLAB with in-house soft-
ware

a few minutes

Eur Radiol (2018) 28:2058–2067 2061
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Feature selection and radiomics signature modelling

After assessing the reproducibility, 296 robust texture features
remained, with ICCs of > 0.8. Meanwhile, 56 of the 296
features showed potential predictive abilities in the initial
single-factor analysis. Followed by the establishment of the
five feature sets, we used the RELIEFF algorithm to sort the
features and selected the three top features in each feature set
as the input variables for SVM models. The results of the
feature selection and the 1000 times 10-fold cross-validation
are shown in Table 4. Having the best predictive performance,
the SVM trained based on the overall feature set was selected.
The descriptions and performances of the model’s input fea-
tures are presented in Table 5. Since each feature can be
thought of as one dimension, a three-dimensional feature
space was constructed by the three selected features. The pa-
tients were projected into the feature space as a point and the
SVM model hyperplane, i.e. the optimal threshold, was also
described. The illustrations of the hyperplane and the distribu-
tion of patients in the feature space are shown in Fig. 2. The
optimal hyperplane was estimated based on the rule that the
prediction power of the model should be maximum in the
primary cohort while ensuring its generalization performance.
The radiomics signature scores of patients, which were the
numeric results calculated via the SVM model, are described
in Table 5.

There were excellent intra-/inter-reader agreement for
our SVM model with the kappa values of 0.867 and
0.800, respectively. The Bland-Altman plots are shown in
Supplementary Information 5.3.

Validation of radiomics signature

Calculated by the STPLAN software, the power of validation
was 0.996 under a given significance level (P = 0.05).

The SVMmodel for differentiating the mutated group from
the wild-type group showed an accuracy of 0.787 (95% CI,
0.669–0.871; sensitivity, 0.757; specificity, 0.833) in the

primary cohort and 0.750 (95% CI, 0.623–0.845; sensitivity,
0.686; specificity, 0.857) in the validation cohort. The value of
radiomics signature was highly correlated with genetic muta-
tions (primary cohort: P < 0.001; OR, 22.19 [95% CI, 5.02–
98.08]; validation cohort: P < 0.001; OR, 11.18 [95% CI,
2.88–43.36]).

In the ROC analysis, the radiomics signature yielded an
area under curve (AUC) of 0.869 (95% CI, 0.780–0.958) in
the primary cohort and 0.829 (95% CI, 0.718–0.939) in the
validation cohort, shown in Fig. 3(a). The radiomics signature
scores for each patient in the primary and validation cohorts
with regard to the mutated and wild-type groups are depicted
in Fig. 3(b).

Gender, age, and radiomics signature were used as input
variables for multivariate logistic regression analysis. The re-
sult showed that only the radiomics signature was the inde-
pendent predictor.

Discussion

The proposed CT-based radiomics signature is associated with
KRAS/NRAS/BRAF mutations. It shows preferable AUC and
specificity for predictingKRAS/NRAS/BRAFmutations, while
it presents a relatively low sensitivity, especially in the valida-
tion cohort. The radiomics signature incorporates three
radiomics features. Clinical background, tumour staging, and
histological differentiation are not associated with KRAS/
NRAS/BRAF mutations in both cohorts. The results indicate
that CT may be useful for predicting KRAS/NRAS/BRAF sta-
tus of patients with colorectal cancer and thus have the poten-
tial to aid in determination of therapeutic strategies.

Previous studies tried to investigate the relationship be-
tween image characteristics and genetic mutations (KRAS,
KRAS/BRAF, or KRAS/NRAS) in colorectal cancer, metastatic
colorectal cancer, or rectal cancer [11–17], and the most used
imaging technique was 18F-FDG PET/CT. Kawada et al. con-
cluded that 18F-FDG PET/CTmay be useful for predicting the

Table 2 Distribution of genetic
mutations in the primary and
validation cohorts

Genetic mutation status No. of patients

Primary cohort
(n=61)

Validation cohort
(n=56)

Mutated group (either mutated KRAS or NRAS or BRAF) 37 (60.66%) 35 (62.50%)

Mutated KRAS only 30 (49.18%) 27 (48.21%)

Mutated NRAS only 4 (6.56%) 4 (7.14%)

Mutated BRAF only 2 (3.28%) 4 (7.14%)

Mutated KRAS/BRAF simultaneous 1 (1.64%)

Wild-type group (nonmutated KRAS and NRAS and BRAF) 24 (39.34%) 21 (37.50%)

Note: n, number.
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KRAS/BRAF mutations with an accuracy of 75%. The sensi-
tivity and specificity were 74% and 75% when a maximum
standardized uptake value (SUVmax) cut-off value of 13 was
used, respectively [12]. Chen et al. showed that SUVmax and
TW40% (40% of the SUVmax) were associated with KRAS
mutations in colorectal cancer according to different location
of primary tumours. The SUVmax value was statistically sig-
nificant for predicting KRAS mutations in the subgroup of

colon or sigmoid colon cancer with the accuracy, sensitivity,
and specificity of 68.1%, 54.3%, and 81%, respectively,
whereas TW40%was significantly higher in theKRASmutant
group in the subgroup of rectum or rectosigmoid junction
cancer with the accuracy, sensitivity, and specificity of
71.4%, 80%, and 79.1%, respectively [15] Kawada et al.
found that KRAS status could be predicted in metastatic colo-
rectal cancer by 18F-FDG PET/CTwith the accuracy of 71.4%

Table 3 Patient and tumor characteristics in the primary and validation cohorts

Characteristics Primary cohort P Validation cohort P

Wild-type group Mutated group Wild-type group Mutated group

Age, years (Mean ± SD) 50.08±11.81 57.16±10.24 0.039* 52.9±10.21 53.31±10.02 0.806
Gender, n (%) 0.015* 0.672
Male 21(87.50%) 20(54.05%) 14(66.67%) 20(57.14%)
Female 3(12.50%) 17(45.95%) 7(33.33%) 15(42.86%)

Tumor size, cm (Mean ± SD) 2.10±0.85 1.80±0.76 0.168 1.79±1.15 2.01±0.65 0.435
Tumor location, n (%) 0.665 0.112
Ascending colon 1(4.17%) 5(13.51%) 1(4.76%) 8(22.86%)
Transverse colon 1(4.18%) 1(2.70%) 0(0.00%) 2(5.71%)
Descending colon 3(12.50%) 2(5.41%) 0(0.00%) 3(8.57%)
Sigmoid colon 3(12.51%) 8(21.62%) 3(14.28%) 2(5.71%)
Rectum 15(62.50%) 20(54.05%) 15(71.43%) 20(57.14%)
Cecum 1(4.17%) 1(2.70%) 1(4.76%) 0(0.00%)

Histologic grade, n (%) 0.185 0.260
Well 0(0.00%) 0(0.00%) 3(14.28%) 2(5.71%)
Moderate 12(50.00%) 26(70.27%) 14(66.67%) 20(57.14%)
Poor 12(50.00%) 11(29.73%) 4(19.05%) 13(37.14%)

TNM stage, n (%) 0.892 0.609
I 0(0.00%) 0(0.00%) 1(4.76%) 1(2.86%)
II 2(8.33%) 2(5.41%) 3(14.28%) 6(17.14%)
III 14(58.33%) 23(62.16%) 10(47.62%) 11(31.43%)
IV 8(33.33%) 12(32.43%) 7(33.33%) 17(48.57%)

T category, n (%) 0.962 0.795
T1 0(0.00%) 0(0.00%) 0(0.00%) 0(0.00%)
T2 0(0.00%) 0(0.00%) 1(4.76%) 1(2.86%)
T3 12(50.00%) 20(54.05%) 12(57.14%) 23(65.71%)
T4 12(50.00%) 17(45.95%) 8(38.10%) 11(31.43%)

N category, n (%) 0.975 0.426
N0 2(8.33%) 3(8.11%) 4(19.05%) 10(28.57%)
N1, N2 22(91.67%) 34(91.89%) 17(80.95%) 25(71.43%)

M category, n (%) 0.942 0.265
M0 16(66.67%) 25(67.57%) 14(66.67%) 18(51.43%)
M1 8(33.33%) 12(32.43%) 7(33.33%) 17(48.57%)

Smoking, n (%) 0.291 0.833
No 13(54.17%) 25(67.57%) 12(57.14%) 21(60.00%)
Yes 11(45.83%) 12(32.43%) 9(42.86%) 14(40.00%)

Hypertension, n (%) 0.353 0.824
No 17(70.83%) 30(81.08%) 19(90.48%) 31(88.57%)
Yes 7(29.17%) 7(18.92%) 2(9.52%) 4(11.43%)

Family history of cancer, n (%) 0.571 0.541
No 18(75.00%) 30(81.08%) 16(76.19%) 24(68.57%)
Yes 6(25.00%) 7(18.92%) 5(23.81%) 11(31.43%)

Diabetes, n (%) 0.255 0.434
No 22(91.67%) 30(81.08%) 18(85.71%) 27(77.14%)
Yes 2(8.33%) 7(18.92%) 3(14.29%) 8(22.86%)

Radiomic signature score, median
(interquartile range)

-0.545 (-0.981~-0.2203) 0.744 (0.046~0.967) <0.001* -0.280 (-0.676~-0.160) 0.393 (-0.091~0.735) <0.001*

Note: n, number; P value was derived from the univariable association analyses between each characteristic and genetic mutation status; tumor size was
measured at the thickest part of the colorectal lesion vertical to the bowel wall on the cross-sectional image (Supplementary Information 5.2).

*, P < 0.05.
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when using an SUVmax cut-off value of 6. The AUC, sensi-
tivity, and specificity for predicting KRASmutations were 0.7,
68%, and 74%, respectively [14]. Miles et al. found that mul-
tifunctional imaging parameters, which included 18F-FDG up-
take, CT texture, and blood flow measured by contrast-
enhanced CT, were associated with KRAS mutation with the
accuracy, true-positive rate, and false-positive rate were
90.1%, 82.4%, and 0% [13]. On the contrary, Krikelis et al.
found that 18F-FDG PET/CT SUVmax was not statistically
significant correlated with KRAS mutation in Caucasian

metastatic colorectal cancer [17]. Different from 18F-FDG
PET/CT, CT is the preferred imaging examination for colorec-
tal cancer in clinical practice. CT-based quantitative metrics
analysis, such as CT texture, has been used in the prediction of
cancer [30]. In the field of genetic mutation prediction, CT
texture has been used to be assessed the relationship with
KRAS mutation in colorectal cancer [11]. The results showed
that skewness was negatively associated with KRASmutation.
In our study, skewness also showed the potential predictive
power. However, it did not remain in the final selection step

Table 4. Results of the model
selection process Feature

set
Selected features Performance in 1000 times 10-fold validation

Accuracy (95% CI) Sensitivity Specificity AUC (95% CI)

Shape surface_area_to_
volume_ratio

0.706(0.599-0.780) 0.685 0.734 0.760(0.682-0.820)

maximum_radius

volume

Histogram 3_fos_mean_
absulute_deviation

0.676(0.580-0.766) 0.505 0.936 0.807(0.716-0.894)

2_fos_range

1_fos_skewness

GLCM 4_GLCM_
maximum_
probability

0.752(0.671-0.811) 0.679 0.872 0.842(0.757-0.897)

6_GLCM_energy

1_GLCM_inverse_
variance

GLRLM 3_GLRLM_LGLRE 0.746(0.643-0.833) 0.669 0.854 0.834(0.703-0.912)

1_GLRLM_RP

7_GLRLM_RP

Overall 4_GLCM_
maximum_
probability

0.766(0.673-0.836) 0.701 0.858 0.860(0.797-0.928)

6_GLCM_energy

8_GLCM_sum_
average

Note: CI, confidence interval; the number in the front of each feature name represents the kind of filter used before
feature extraction; the three top features of the overall feature set were all the GLCM features; therefore, the third
was removed before sorting the GLCM feature set to avoid the construction of a repeated model.

Table 5 Descriptions of the three selected features and their performances

Features Filters Primary cohort P Validation cohort P

Wild-type group Mutated group Wild-type group Mutated group

4_GLCM_maximum_probability XLHH 0.0362 ±0.0025 0.0379 ±0.0024 0.014* 0.0365 ±0.0020 0.0378 ±0.0021 0.029*

6_GLCM_energy XHLH 0.0162 ±0.0012 0.0169 ±0.0013 0.030* 0.0163 ±0.0010 0.0170 ±0.0016 0.042*

8_GLCM_sum_average XHHH 25.8407 ±0.0584 25.8787 ±0.0916 0.038* 25.8551 ±0.0649 25.8741 ±0.0802 0.491

Note: data are mean ± standard deviation; P value was derived from the univariable association analyses between each feature and genetic status.

*, P < 0.05.

XLHH: The original image was filtered directionally with a low-pass filter along the x directions and with a high-pass filter along the y and z directions.
XHLH: The original image was filtered directionally with a high-pass filter along the x and z directions and with a low-pass filter along the y direction.
XHHH: The original image was filtered directionally with a high-pass filter along all three directions.
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because other selected radiomics features displayed better pre-
dictive abilities. The proposed CT-based radiomics signature
incorporates three radiomics features. Clinical background,
tumour staging and histological differentiation were not asso-
ciated withKRAS/NRAS/BRAFmutations in both cohorts. The
AUC, sensitivity, and specificity for predicting KRAS/NRAS/
BRAF mutations were 0.869, 0.757, and 0.833 in the primary
cohort, respectively, while they were 0.829, 0.686, and 0.857
in the validation cohort, respectively. It shows preferable AUC

and specificity compared with other research. However, it
presents a relatively low sensitivity, especially in the valida-
tion cohort. The improvement of sensitivity is needed for clin-
ical use in the future.

As a preliminary study, it still has some limitations.
Firstly, we just included a single team with an internal
validation and specific machines/software. The reproduc-
ibility of our model under different imaging settings
should be justified via more external validation in the

Fig. 2 The separation hyperplane of the SVM model, along with the patients in (a) the primary cohort and (b) the validation cohort. The grey surface
represents the hyperplane. The points represent the patients (TN, blue solid points; TP, red solid points; FN, red stars; FP, blue stars)

Fig. 3 The SVM performance of predicting KRAS/NRAS/BRAF
mutations. (a) ROC curves and the AUC for the radiomics signature
score. The red line and the blue line represent the ROC curves in the
primary cohort and the validation cohort, respectively. The solid dots
represent the optimal cut-off value (i.e., the SVM model hyperplane)

for the discrimination calculated based on the primary cohort. (b) A
radiomics signature score for every patient in each cohort. The red marks
indicate the patients in the mutated group, while the green marks indicate
the patients in the wild-type group.
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future because different features are always affected by
the reconstruction settings in varying degrees [31].
Secondly, the study included stages I, II, III, and IV of
colorectal cancer patients, similar to other studies [12,
13]. Although it is reasonable to include all four stages
of patients to analyse the relationship between radiomics
features and genetic status, the better choice might be
including only stage IV patients because there is less het-
erogeneity intratumorally in terms of KRAS mutations in
stage IV colorectal cancer tumours [32]. Thirdly, it will be
better for us to investigate whether the radiomics signa-
ture can predict the survival rates of anti-EGFR therapy in
the future.

For the radiomics signature construction, 346 candidate
features were reduced to three key features. Finally, the
selected radiomics signature comprised 6_GLCM_energy,
4 _ G L C M _ m a x i m u m _ p r o b a b i l i t y , a n d
8_GLCM_sum_average. In our previous work, we used
a linear combination of features for lymph node prediction
in colorectal cancer [18] and progression free survival
prediction in advanced nasopharyngeal carcinoma [21].
The latent relation among genetic status, intratumor het-
erogeneity and radiological phenotype features is complex
and maybe non-linear, and therefore, we combined the
three selected features to a radiomics signature based on
a machine learning method with the competence to recog-
nize the deeper pattern. Machine learning is an advanced
technology now widely used in medical diagnosis
[33–35]. When applied to the problems of status classifi-
cation, machine learning can be classified into two cate-
gories: one based on the statistical pattern and the other
based on the neural network. While the artificial neural
network, especially the deep convolutional neural network
[33, 34], has achieved remarkable performances in many
clinical medical applications with a large sample size, an
SVM is a type of statistical classifier model based on
structural risk minimization and has been used to solve a
series of nonlinear problems with a small sample size. In
this study, a SVM was used for radiomics signature
modelling. For the predictive problem of genetic status,
the proposed SVM-based radiomics signature achieved
noticeable results in both primary and validation cohorts,
making it a promising method to facilitate the prediction
of KRAS/NRAS/BRAF mutations in patients with colorec-
tal cancer for guiding targeted therapy.

In conclusion, the proposed CT-based radiomics signature
is associated with KRAS/NRAS/BRAF mutations. CT may be
useful for analysis of tumour genotype in CRC and thus help-
ful to determine therapeutic strategies.
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