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Background and purpose: Risk prediction of overall survival (OS) is crucial for gastric cancer (GC) patients
to assess the treatment programs and may guide personalized medicine. A novel deep learning (DL)
model was proposed to predict the risk for OS based on computed tomography (CT) images.
Materials and methods: We retrospectively collected 640 patients from three independent centers, which
were divided into a training cohort (center 1 and center 2, n = 518) and an external validation cohort
(center 3, n = 122). We developed a DL model based on the architecture of residual convolutional neural
network. We augmented the size of training dataset by image transformations to avoid overfitting. We
also developed radiomics and clinical models for comparison. The performance of the three models were
comprehensively assessed.
Results: Totally 518 patients were prepared by data augmentation and fed into DL model. The trained DL
model significantly classified patients into high-risk and low-risk groups in training cohort (P-value
<0.001, concordance index (C-index): 0.82, hazard ratio (HR): 9.79) and external validation cohort (P-
value <0.001, C-index: 0.78, HR: 11.76). Radiomics model was developed with selected 24 features and
clinical model was developed with three significant clinical variables (P-value <0.05). The comparison
illustrated DL model had the best performance for risk prediction of OS according to the C-index (train-
ing: DL vs Clinical vs Radiomics = 0.82 vs 0.73 vs 0.66; external validation: 0.78 vs 0.71 vs 0.72).
Conclusion: The DL model is a powerful model for risk assessment, and potentially serves as an individ-
ualized recommender for decision-making in GC patients.

� 2020 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 150 (2020) 73–80
Gastric cancer (GC) is one of the most common gastrointestinal
malignancies worldwide. Although its incidence has decreased, GC
still serves as the third leading cause of cancer-associated deaths,
particularly in Eastern Asia [1]. Currently, patients with advanced
GC are recommended to receive surgical resection, adjuvant
chemotherapy and radiotherapy for improvement of the treatment
in line with the US National Comprehensive Cancer Network
guidelines [2]. However, previous studies revealed that the rates
of 5-year survival are still poor, and surgical morbidity is high
[3], which have led to wide investigation for survival analysis.

The state-of-the-science tumor-node-metastasis (TNM) staging
system (8th edition) of GC promulgated by The American Joint
Committee on Cancer (AJCC) is widely used as the gold standard
for prognostic evaluation and survival risk stratification [4]. How-
ever, the authors indicated that the manual is not an exact science,
which is the ongoing work and will be updated to reflect the state-
of-the-art changing [4]. Particularly, for personalized medicine,
The AJCC Personalized Medicine Core (PMC) committee has been
increasingly conscious of the necessity for more individualized
predictions than those presented by ordinal cancer staging systems
based on risk models constructed by machine learning approach
[5]. Overall survival (OS) was required by The AJCC PMC as the out-
come being predicted for the risk models.
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Recently, related works have focused on non-invasive methods
of imaging, especially for computed tomography (CT), which is the
routinely used modality for staging and risk assessment [6]. Radio-
mics, an emerging field, is an accepted method to analyze the med-
ical images by extracting amounts of quantitative features [7].
Previous study found that radiomic features extracted from CT
images had prognostic value for overall survival in patients with
lung cancer [8]. Zhang et al. developed a radiomic nomogram to
predict early recurrence in GC patients following curative resection
[9]. Some studies have demonstrated that radiomics method was a
meaningful tool associated with tumor prognosis in patients with
nasopharyngeal cancer and gastric cancer [10,11]. Nevertheless,
standard procedures of radiomics method need accurate delin-
eation for segmentation and retest the stability for features, which
may cause variability and inconsistent reproducibility [12]. Thus, it
is relatively convenient and labor-saving to develop a tool for sur-
vival analysis, which can lower the delineation standard and tailor
training process to train the model by feeding segmented CT
images into the network and extracting the features by itself [13].

Currently, studies on medical image analysis are undergoing a
transformation from engineering of feature extraction to self-
learning. In particular, deep learning (DL), a state-of-the-art
methodology, has attracted much attention and achieved huge
breakthroughs in a wide range of computer vision task and clinical
applications [14]. Bello et al. demonstrated DL method can be
applied to develop a motion model to efficiently predict survival
[15]. DL method has been also used for the screening the GC
patient focusing on endoscopic image-based analysis [16]. How-
ever, the implement of DL method for the risk prediction of OS in
GC patients based on CT images remains unclear.

In this study, we developed a DL model for risk prediction of OS
based on the widely recognized residual convolutional neural net-
work (CNN) [17]. We also constructed a potential individualized
recommender system to provide recommendations for decision-
making.

Materials and methods

Fig. 1 shows an overview of this study via the DL model in com-
bination with the TNM staging system for the individualized
treatment.
Patients

Ethical approval was respectively received for the Institutional
Review Board of each center, and informed consent from patients
was waived. This was a retrospective multicenter study. A total
of 640 consecutive patients who were pathologically diagnosed
with GC from June 2010 to April 2019 were enrolled from three
independent centers. We divided eligible patients into a training
cohort (n = 518, from center 1 and center 2) and an external vali-
dation cohort (n = 122 from center 3), which is shown in Supple-
mentary Fig. A1. Supplementary Table A1 and Part 2 show the
parameters for CT images and the details of follow-up for OS. Char-
acteristics in the training and external validation cohorts are
shown in the Table A2.
Image segmentation

We used the software ITK-SNAP for segmentation [18]. For each
patient, we selected a slice of CT image with largest tumor region
and nearest upper and lower slices in portal venous phase by two
experienced radiologists and outlined them with three rough rect-
angle boxes. In order to avoid coarse label for each patch, the
region of interest was acquired at first. Afterwards, the input image
for the deep learning model was the region of interest. For
constructing the radiomics model, we manually delineated pre-
cisely the tumor region of the slice with largest tumor region again.
The diagram of segmentation is shown in Fig. 2.
Model construction

We constructed a DL model based on 18-layers residual CNN
with the input of segmented CT images (size: 224*224) [17]. The
model consisted of 8 residual blocks, which have the ‘‘short cut”
for transmitting gradient efficiently and accelerating the conver-
gence of the network (Fig. 2). We tailored the dense and dropout
layers at the top of the model. We also defined the specialized loss
function (Supplementary Formula A1) to train the model for risk
prediction. Some techniques including data augmentation and
fine-tuning were used to train the model and avoid overfitting.
More details regarding the training procedure can be found in
the Supplementary Part 4. For comparison, we also constructed
the radiomics model (Fig. 2B) based on hand-crafted features and
clinical models for comparison. The output of each model, named
risk score for each GC patient, represented the hazard degree for
occurrence of the endpoint of interest.
Assessment of prognostic performance for DL model

To investigate the potential association between the proposed
DL model and OS, we depicted Kaplan–Meier (KM) curves. For each
patient, the cutoff of median risk score was obtained in the training
cohort. Patients with the scores lower than the cutoff were classi-
fied into the low-risk group, while others were classified into the
high-risk group.

Furthermore, we performed stratification analysis to validate
the performance of the DL model in different subgroups (T stage,
N stage, TNM stage, and adjuvant chemotherapy). We employed
visualization techniques to present the self-learned feature maps
inside the DL model [19]. We developed a risk score grading tool
based on a widely used nomogram [20]. To show the network ben-
efit, the clinically accepted tool of decision curve analysis (DCA)
was applied to verify the prognostic value of the DL model [20].
We calculated the Harrell’s concordance index (C-index) and haz-
ard ratio (HR) to evaluate the performance of the three models.
Finally, we proposed an individualized recommender system for
potential clinical application.
Statistical analysis

We performed the statistical analysis with R software (http://
www.R-project.org). The features and clinical variables were com-
pared using the Mann–Whitney U test. KM curves were compared
by Log-Rank test. Moreover, the G-rho rank test was used for cal-
culation of the HR [21]. We also compared the C-index of the DL
model with other models by a non-parametric test. The result
was considered statistically significant when the P-value (from
two-sided tests) was less than 0.05.

Results

Schoenfeld residuals test demonstrated that each clinical vari-
able was eligible to use Cox regression for univariable and multi-
variable analysis (Fig. A2). T stage, N stage, and adjuvant
chemotherapy were significant (P-value <0.05, Table A3) for con-
struction of clinical model. In training cohort, median survival time
was 28 months. In external validation cohort, the median survival
time was 56 months.

The DL model with residual blocks and the identity mapping
was constructed to show the learning capability of risk prediction.
A total of 12,432 images were generated by data augmentation and
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Fig. 1. The overview of the study design.

Fig. 2. Architectures of deep learning (DL) model based on residual convolutional neural network and radiomics model based on hand-crafted features.
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fed into DL model. Finally, the risk score was output for each
patient. Further details regarding the development of the radio-
mics model are shown in Supplementary Part 7.

The DL model could classify all patients into two different risk
subgroups (the low-risk and high-risk) in the training cohort (P-
value <0.001, C-index: 0.82, 95% confidence interval (CI) 0.80–
0.84, HR: 9.79, 95%CI 7.15–13.41) and external validation cohort
(P-value <0.001, C-index: 0.78, 95%CI 0.72–0.83, HR: 11.76, 95%CI
4.23–32.71). KM curves for DL model are shown in Fig. 3. Clinical
data analysis of different risk groups in the both cohorts are shown
in Table 1. In the training cohort, median survival time was
14 months in the high-risk group, and 45 months in low-risk
group. In the external validation cohort, the median survival time
in the high-risk group was 45 months, and 66 months in low-
risk group. The stratification analysis revealed that the DL model
also had good performance for risk prediction in different sub-
groups pertaining to N stages (Fig. A3), T stages (Fig. A4), TNM
stages (Fig. A5), and adjuvant chemotherapy (Fig. A6).

DL model could learn discriminative features for GC patients in
different risk groups with different survival time. Examples for two
patients were shown in the Fig. 4, one from the high-risk group and
one from the low-risk group in line with the risk scores predicted
by the three models. The feature maps extracted from shallow to
deep layers of the DL model were visualized. Highly responsive
areas colored red of a region of interest (ROI) were found the differ-
ent in two risk groups. With the number of layers of the network
increasing, the DL model can focus on the highlights in the ROI
with small sized feature maps by convolution and pooling. The
high-risk groups with corresponding risk scores (DL vs Clinical vs
Radiomics: 0.98 vs 0.6 vs 0.62) and low-risk groups with



Fig. 3. Comparison of Kaplan–Meier (KM) curves for models. (A), (D): deep learning (DL) model; (B), (E): clinical model; (C), (F): radiomics model. Each vertical tick on the
bottom of the KM curves represents a patient who was censored at that time.
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corresponding risk scores (DL vs Clinical vs Radiomics: 0.1 vs 0.28
vs 0.49) were obtained by the three models.

Clinical data analysis in Table A2 shows that the HR for adjuvant
chemotherapy was 0.62 (95% CI: 0.46–0.82), which revealed the
adjuvant chemotherapy was a good prognostic factor for GC
patients. DL model also showed consistent risk prediction by fur-
ther stratification. According to the analysis of multiple factors of
N stage and adjuvant chemotherapy, the further results (Fig. A7)
shows that GC patients were also divided into high and low cumu-
lative hazard subgroups by the DL model. We also found that the
DL model can performed well according to the T stage and adju-
vant chemotherapy (Fig. A8). In each subgroup, the findings
showed that GC patients in low-risk groups with lower cumulative
hazard grouped by DL model had better OS than the high-risk.

To evaluate the performance of the three models, the compar-
ison for KM curves is shown in Fig. 3. The cut-off obtained in the
training cohort was 0.668, 0.502 and 0.504 for the deep learning
model, clinical model and radiomics model respectively. We
depicted the distribution of risk scores for patients predicted by
three models (Fig. 4A). In the distribution shape of the risk score
for the DL model in the training cohort, all patients were divided
into two subgroups, wherein patients in high-risk group were cen-
tralized. Moreover, in Fig. 4B and C, the DL model shows the best
capability for prediction with the highest C-index in the training
cohort (DL vs Clinical vs Radiomics: 0.82 vs 0.73 vs 0.66), wherein
the comparison of C-index was significant (P-value <0.01). Mean-
while, C-index of the DL model also outperformed the others in
the external validation cohort (DL vs Clinical vs Radiomics: 0.78
vs 0.71 vs 0.72) with a significant difference between the DL model
and the clinical model (P-value <0.05).

As is shown in Fig. 4C, the DL model had the highest HR both in
training cohort: (9.79 vs 3.84 vs 2.48) and external validation
cohort (11.76 vs 3.57 vs 5.86), which indicated the high-risk groups
predicted by DL model had higher hazard of death than the high-
risk groups predicted by other models. Furthermore, in compar-
isons of the time-dependent receiver operating characteristic
(ROC) curves (1-year, 2-year and 3-year) for three models, we
found that the performance of the DL model equally outperformed
the other models in both cohorts (Fig. A9).

The nomogram, calibrations and DCA curves of DL model were
depicted in Fig. 5, which shows good performance for risk predic-
tion. The DCA indicated that the DL model provided a greater net
benefit than other models for the patients. Therefore, we con-
structed the individualized grading rule of nomogram to divide
GC patients into low-risk and high-risk subgroups. After all GC
patients were divided into two groups by the individualized grad-
ing rule, we constructed a deep learning-aided recommender by
calculating the difference (Db xð Þ - Drisk) to measure the degree of
risk in the subgroups (Supplementary Fig. A10).

In order to show the generalizability of the model, we con-
structed deep learning (DL) model again, where we combined cen-
ter 1 and 3 as the training cohort (n = 459) and used center 2 as
external validation cohort (n = 181). As shown in the follow figure,
the DL model significantly classified patients into high-risk and
low-risk groups in training cohort (Supplementary Fig. A11, P-
value <0.001, concordance index (C-index): 0.77, 95% confidence



Table 1
Characteristics analysis by deep learning model.

Characteristic Training cohort P-value� External validation cohort P-value�

Low risk High risk Low risk High risk

Age (years)y 57(56 ± 10) 59(56 ± 11) 0.14 59(59 ± 10) 58(58 ± 12) 0.77
Gender 0.86 0.74
Male 189(73) 188(73) 32(70) 52(68)
Female 70(27) 71(27) 14(30) 24(32)
Tumor localization 0.49 <0.01
Proximal 46(18) 54(21) 13(28) 33(43)
Middle 68(26) 66(25) 5(11) 13(17)
Distal 145(56) 139(54) 28(61) 30(40)
Tumor size 0.02 <0.01
<5 cm 173(67) 116(45) 28(61) 23(30)
=5 cm 86(33) 143(55) 18(39) 51(67)
NA 0(0) 2(3)
Lymphovascular invasion 0.01 0.28
Negative 82(32) 49(19) 20(43) 31(41)
Positive 177(68) 210(81) 26(57) 45(59)
Differentiation 0.05 0.13
Well + moderate 127(49) 89(34) 17(37) 25(33)
Poor + undifferentiated 132(51) 170(66) 29(63) 51(67)
T stage <0.01 <0.01
T1a-T1b 22(8) 1(0) 3(6) 2(2.5)
T2 48(19) 12(5) 7(15) 2(2.5)
T3 113(44) 88(34) 32(70) 57(75)
T4a 76(29) 158(61) 4(9) 15(20)
N stage <0.01 <0.01
N0 108(42) 35(14) 10(22) 14(19)
N1 58(22) 29(11) 15(33) 10(13)
N2 39(15) 67(26) 9(19) 20(26)
N3a-N3b 54(21) 128(49) 12(26) 32(42)
TNM stage <0.01 <0.01
Ⅰ 40(15) 6(2) 7(15) 2(3)
Ⅱ 82(32) 29(11) 19(41) 23(30)
III 137(53) 224(87) 20(44) 51(67)
Adjuvant chemotherapy <0.01 0.63
No 47(18) 61(24) 25(54) 37(49)
Yes 212(82) 198(76) 21(46) 39(51)
Follow-up (Month)y 45(43 ± 14) 14(17 ± 11) 66(67 ± 21) 45(45 ± 27)

Values in parentheses are percentages (%).
y Values are median(mean + std).
� Continuous variables were tested by Mann–Whitney U test and discrete variables were tested by Pearson’s Chi-squared test.
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interval (CI):0.74–0.79, hazard ratio (HR): 5.54, 95%CI: 4.07–7.54)
and external validation cohort (P-value <0.001, C-index: 0.76,
95%CI 0.71–0.80, HR: 6.91, 95%CI 4.06–11.78).
Discussion

In this study, we investigated the performance of a DL model
using CT images, with the aim of improving the prediction of OS
for GC patients. The DL model showed encouraging outcomes with
regard to its capability to stratify GC patients into two groups with
discrepant prognosis in the training and external validation
cohorts compared with other models. We found that high-risk
groups had poor OS, whereas low-risk groups better. To further
visualize and interpret the dynamic change inside the DL model,
feature maps were vividly visualized and represented. For the stan-
dard treatment of adjuvant chemotherapy, covariate analysis for
the DL model shows potential guidelines for GC patients.

We proposed a DL model based on residual network, which was
demonstrated that it was suitable to predict the risk for GC
patients. We implemented several methods to train the model
(Supplementary Part 4). He et al. have demonstrated that residual
block and the identity mapping can improve the learning capabil-
ity, and address the degradation problem [17]. Our outcomes
revealed that residual network, in some cases, could also address
the degradation problem for CT images analysis, and data augmen-
tation was useful for enlarging the training data to cope with the
problem of overfitting. Meanwhile, the techniques of dropout and
fine-tuning were also efficient to improve the robustness for the
DL model based on limited CT images.

Although the golden standard for treatment of GC patients is
AJCC TNM staging system [4], the AJCC has realized that risk model
for OS is necessary for more individualized probabilistic prognosti-
cation [5]. In particular, for personalized treatment, previous stud-
ies have implicated that the TNM staging system have some
drawbacks [22]. For instance, although the patients belonged to
confirmed subgroup (T stage = T2, N stage = N0, TNM stage = IB),
we can’t obtain the further information about degree of risk for
each patient or the different risk groups they belonged to, which
may lead to suboptimal recommendations for individualized treat-
ment. Conversely, the DL model can classify the patients into dif-
ferent risk groups and the recommender provides
recommendation for individualized treatment combined with
TNM staging system. According to the stratification analysis with
multiple factors of the N stage, T stage, and adjuvant chemother-
apy, the findings revealed that the DLmodel is a powerful predictor
for risk prediction, which have the potential to serve as a model-
based reference index for an updating TNM staging system to
improve clinical decision making.

Currently, the popular method of radiomics plays an important
role in prognostic analysis [23]. However, elaborate delineation by
radiologists of the ROI hinders deployment of segmentation in clin-
ical practice. In practice, the work of segmentation for our pro-
posed model is easy and time-saving to complete, since we do



Fig. 4. Model analysis with measurable indicators. (A) Risk score distribution for the origin output of three models; (B) Comparison of the C-index between deep learning (DL)
models and other models by P-value. The Student’s t-test by R package (‘‘survcomp”, version:1.34.0) used for the comparison of the concordance indices; (C) Comparison of
model performance by concordance index (C-index) and hazard ratio (HR). (D) Model interpretation and visualization for the potential association between feature maps with
pathological staging information. y The HR was calculated by comparing the high-risk group with low-risk group. � The clinical model was constructed based on AJCC 8th
staging system in combination with the risk factors of adjuvant chemotherapy.
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not require the tumor to be precisely delineated. Hence, the DL
model is considered relatively as an easy-to-use and labor-saving
tool for clinical application. In addition, compared with hand-
crafted radiomics features, the feature maps were learned auto-
matically from the shallow to deep convolutional layers by the
DL model, including simple low-level features to complex high-
level features. Hence, our study presents a promising approach.

In addition, Cox Proportional Hazard (CPH) Model are widely
used for survival analysis [24]. However, the assumption of CPH
model that logarithmic HR is linearly correlated with each risk fac-
tor is restrictive. While universally-applicable methods, such as DL
method, can construct robust model without any assumption.
Katzman et al. illustrated that DL model (DeepSurv) showed good
performance and can provide personalized recommendations
based on simulated and real survival data [25]. Yousefi et al.
reported that DL model showed good performance to learn infor-
mation from diseases for survival analysis with public molecular
data [26]. Kim et al. applied the DeepSurv for survival analysis in
oral squamous cell carcinoma (SCC) patients, and the model out-
performed the random survival forest (RSF) and the CPH models
[27]. Matsuo et al. investigated 40 clinical features and indicated
that DL model can be a potential tool for survival prediction in
women with cervical cancer, which showed superior performance
than CPH model [28]. Sun et al. proposed a multimodal DL model
by integrating Multi-dimensional Data (clinical and gene) for the
prognosis prediction of breast cancer, and achieved a better perfor-
mance than other existing methods with single-dimensional data
[29]. Nie et al. constructed a 3D DL model for feature extraction
with multi-modality brain images of glioma patients, and experi-
mentally found that the DL method could learned discriminative



Fig. 5. Clinical application and further validation for deep learning (DL) model. (A) Individualized grading rules for risk score based on nomogram. (B) Calibration curves of
the DL nomogram in the training cohort. (C) Comparison of decision curve analysis for the DL model.
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features from multi-modality images for accurate prediction of the
OS time [30]. Previous study exploited a multi-channel 3D CNN
model to extract self-learned features from multi-modal brain
images [31]. They found multi-channel deep survival network is
powerful for prediction of OS time. Yao et al. proposed a deep cor-
relational survival model to handle multi-modality data effectively,
and the result demonstrated that the learned interactions can
affect survival outcomes [32]. We also demonstrated that DL model
outperformed the model constructed based on hand-crafted fea-
tures and the clinical model based on clinical risk factors.

Despite the encouraging performance of the DL model, there
are several limitations. Our model was developed based on the
patients of Asian race, and further validation across other races
should be studied. Although the segmentation was time-saving
for the point of the comparison, the work has defects. The further
work should be done for comparison to show the advantage of
deep learning method for survival model. Meanwhile, the DL
model was demonstrated here with only a limited dataset, and
a larger dataset should be collected to validate a more robust per-
formance. Additionally, the model was constructed only based on
preoperative CT images, which may show more significant find-
ings in combinations with pathological image and other types.
We only employed three slices in each patient to construct
model. Although three-dimensional delineation is time-
consuming, the further work should be explored. Above all,
although the work of interpretation and visualization was shown,
the more acceptable and friendly approach for interpretability
should be investigated.

In conclusion, the DL model can provide CT-based prognostic
risk scores related to the OS of GC patients, and the findings
demonstrated higher prognostic value than clinical and radiomics
models. Most notably, our individualized recommender based on
the DL model was validated through diverse verification, wherein
it showed powerful prognostic ability. Therefore, the recommender
is a potential tool to assist clinicians with therapeutic decision-
making and individualized treatment.
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