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Background: Gleason score (GS) is a histologic prognostic factor and the basis of treatment decision-making for prostate
cancer (PCa). Treatment regimens between lower-grade (GS ≤7) and high-grade (GS >7) PCa differ largely and have great
effects on cancer progression.
Purpose: To investigate the use of different sequences in biparametric MRI (bpMRI) of the prostate gland for noninvasively
distinguishing high-grade PCa.
Study Type: Retrospective.
Population: In all, 489 patients (training cohort: N = 326; test cohort: N = 163) with PCa between June 2008 and January
2018.
Field Strength/Sequence: 3.0T, pelvic phased-array coils, bpMRI including T2-weighted imaging (T2WI) and diffusion-
weighted imaging (DWI); apparent diffusion coefficient map extracted from DWI.
Assessment: The whole prostate gland was delineated. Radiomic features were extracted and selected using the Kruskal–
Wallis test, the minimum redundancy-maximum relevance, and the sequential backward elimination algorithm. Two single-
sequence radiomic (T2WI, DWI) and two combined (T2WI-DWI, T2WI-DWI-Clinic) models were respectively constructed
and validated via logistic regression.
Statistical Tests: The Kruskal–Wallis test and chi-squared test were utilized to evaluate the differences among variable
groups. P < 0.05 determined statistical significance. The area under the receiver operating characteristic curve (AUC),
specificity, sensitivity, and accuracy were used to evaluate model performance. The Delong test was conducted to com-
pare the differences between the AUCs of all models.
Result: All radiomic models showed significant (P < 0.001) predictive performances. Between the single-sequence radio-
mic models, the DWI model achieved the most encouraging results, with AUCs of 0.801 and 0.787 in the training and test
cohorts, respectively. For the combined models, the T2WI-DWI models acquired an AUC of 0.788, which was almost the
same with DWI in the test cohort, and no significant difference was found between them (training cohort: P = 0.199; test
cohort: P = 0.924).
Data Conclusion: Radiomics based on bpMRI can noninvasively identify high-grade PCa before the operation, which is
helpful for individualized diagnosis of PCa.
Level of Evidence: 4
Technical Efficacy Stage: 2
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PROSTATE CANCER (PCa) ranks second in fatal cancer
causes for men in 2019 as the most commonly diagnosed

male cancer in the United States.1,2 Early diagnosis and treat-
ment can effectively improve survival rates among PCa
patients.3

According to the treatment guidelines recommended by
the National Comprehensive Cancer Network,4 the Gleason
score (GS) is one of the most important factors in the diagnosis
of PCa. Patients can be categorized into GS ≤7 (lower-grade
PCa) and GS >7 (high-grade PCa) with an incidence of ~15% in
PCa patients.5,6 A study has shown that the 5-year recurrence-
free progression probabilities for lower-grade PCa (63–96%) and
high-grade PCa (26–48%) have great differences.7 Lower-grade
PCa patients may benefit from relatively conservative treatment
strategies or short-time neoadjuvant antiandrogen therapy
(ADT) for 4–6 months, while high-grade PCa patients are
suggested a longer ADT with 2–3 years that may improve the
prognosis and reduce mortality.4,8,9 However, GS can only be
determined via needle biopsy or resection.10–12 Therefore, accu-
rate noninvasive determination of high-grade PCa at the initial
diagnosis or before surgery is very important for treatment
decision-making and the prognosis of patients.

Although previous studies have highlighted the potential
role of magnetic resonance imaging (MRI) for predicting PCa
(including high-grade PCa),13–16 there is no clear consensus on a
robust biomarker of images in assessing its aggressiveness. Fur-
thermore, radiologists’ diagnoses of PCa are relatively subjective,
relying on clinical experience.

Recently, radiomic analysis that enables extracting huge
amounts of quantitative features from images has been utilized to
aid in clinical decision-making in many cancers.17,18 Also, radio-
mic approaches that aim to identify the presence of disease, non-
invasively discriminate grade or stage, and stratify disease risk

based on MRI have been proposed.19,20 Several studies have
demonstrated that texture features from the tumor region on
MRI could distinguish GS, identify PCa, and determine aggres-
siveness.15,16,21 However, few previous studies evaluated the
capability of differences of different sequences of biparametric
MRI (bpMRI).

In this study we aimed to investigate the value of
bpMRI radiomics in the prediction of high-grade PCa.

Materials and Methods
Patients and MRI Data Acquisition
We retrospectively enrolled PCa patients treated at our hospital from
June 2008 to January 2018, with GS determined by pathology. The
requirement for informed consent was waived by the Ethics Com-
mittee of the hospital. The study design is shown in Fig. 1.

3.0T MR scanners at a single institution (Magnetom Verio, Sie-
mens Healthcare, Erlangen, Germany) using pelvic phased-array coils
were applied to scan all the patients. For each standard prostatic MRI
examination conducted, T2-weighted imaging (T2WI) and diffusion-
weighted imaging (DWI) were included. The apparent diffusion coeffi-
cient (ADC) map was also calculated from the DWI. Table 1 shows the
scanning parameters of bpMRI.

In our hospital, the scanning protocols were in strict accor-
dance with the requirements of the latest guidelines, and the b-values
were scanned from b-0 to high b value series step-by-step
(2008–2015 b-value: 0, 50, 100, 150, 200, 400, 600, 800 s/mm2;
after 2015 b-value: 0, 50, 100, 150, 200, 600, 800, 1600 s/mm2).
Therefore, in our study we used a b-value of 800 s/mm2, since most
of the patients have this b-value DWI image.

The inclusion criteria were as follows: 1) patients diagnosed
with PCa by pathology; 2) patients who underwent MRI examina-
tion before pathological examination, including T2WI and DWI; 3)
the interval between MRI capture and pathological examination of
less than 6 weeks; 4) pathological examination with a specific GS

FIGURE 1: The pipeline of MRI radiomics analysis for predicting high-grade PCa. (a) Biparametric MRI findings for PCa. (b)
Segmentation by radiologists. (c) Extraction of radiomic features. (d) Selection of features, the development of single-sequence and
combined models. (e) Evaluation of the models using AUC, Delong test, and decision curves. GS = Gleason score; PCa = prostate
cancer; MRI = magnetic resonance imaging; AUC = the area under the receiver operating characteristic curve.

2

Journal of Magnetic Resonance Imaging



score and meeting the following conditions: for patients with a sys-
temic puncture with 12 + X needle biopsy, GS scores of specimens
from different cancer areas were the same; for patients who under-
went radical prostatectomy, GS scores of different cancer areas in
postoperative pathology were the same.

The exclusion criteria were: 1) incomplete clinical data; 2)
poor image quality that was unable to outline the prostate.

Between June 2008 and January 2018, there were 602 candidate
patients satisfied the inclusion criteria and 113 patients were excluded,
leaving a total of 489 eligible patients (72.79 � 7.20 years old) includ-
ing 275 patients with a systematic puncture and 214 patients who
underwent radical prostatectomy. Among them, 238 belonged to the
lower-grade PCa group and 251 to the high-grade one.

In this study two-thirds of the total samples were randomly
selected as the training cohort (N = 326), while the remaining
patients were included in the test cohort (N = 163).

Clinical Characteristics
In this study prostate-specific antigen (PSA) levels, PSA density (PSAD),
and age were analyzed as potential clinical factors (Supplementary 1).
Univariate analyses were performed to explore the significances of these
clinical characteristics in the training and test cohorts.

The clinically significant characteristics were used to construct a
clinical model via logistic regression (LR) for high-grade PCa prediction.
In this process, the area under the receiver operating characteristic
(ROC) curve (AUC), specificity (SP), sensitivity (SE), and accuracy
(ACC) were calculated to evaluate the performance of the model.

Region of Interest Masking
ITK-SNAP v. 3.4.0 (www.itksnap.org) was utilized for 3D manual
segmentation in bpMRI including T2WI, DWI, and ADC map.

Without knowing the clinical information and pathological
results of patients, a radiologist with 5 years of experience (reader 1) in
reading MRI segmented the whole prostate gland layer-by-layer as the
region of interest (ROI) on T2WI, DWI, and the ADCmap, separately.
The prostate was roughly outlined according to the Prostate Imaging
Reporting and Data System (PI-RADS) v2,22 and the clinically

peripheral zone and transitional zone were mainly used. Anatomical
landmarks such as the urethra, ejaculatory ducts, and prostatic capsule
were used to determine the ROI, and the surrounding fat, muscle tissue,
large blood vessels, and veins were excluded.

To assess the accuracy of the manual segmentations, 60 sam-
ples were randomly selected from the training cohort to be
resegmented by reader 1 and another radiologist (reader 2) with over
10 years of experience in evaluating prostate MRIs after 3 months.
Further details can be found in the Supplementary 2.

Radiomic Feature Extraction and Selection
Radiomic features were extracted using the package of Pyradiomics
in Python (v. 3.6; https://www.python.org/).23 Three groups of fea-
tures including first-order statistical, shape, and textural features were
extracted from the bpMRI of the ROI.

In this study the extracted radiomic features were selected
using the Kruskal–Wallis test and the minimum redundancy-
maximum relevance (mRMR). The parameter within the mRMR
was set using a grid search with 10-fold cross-validation. LR analysis
with the sequential backward elimination (SBE) algorithm was then
adopted to choose the key features (see Supplementary 3). The pre-
process for data is detailed in the Supplementary 4.

Single-Sequence Radiomic Model Construction and
Validation
Employing the selected key features, two single-sequence radiomic
models were respectively constructed via LR analyses in the training
cohort, including a T2WI model and a DWI model. Specifically, the
model T2WI was constructed by the key features of T2WI of bpMRI;
the model DWI was constructed by the radiomic scores
(Supplementary 5) of the DWI images and ADC map, since the ADC
map was calculated from DWI images and they basically evaluated the
same thing. The models were then evaluated in the test cohort via AUC,
SP, SE, and ACC.

Combined Model Construction and Validation
To investigate the predictive power of the combined sequences of
MRI, a combined radiomic model, T2WI-DWI, was then con-
structed via LR analysis based on the combinations of the single-
sequence radiomic models T2WI and DWI. Note that the construc-
tion and evaluation of T2WI-DWI utilized the same method as the
single-sequence radiomic models.

Since the clinical information is routinely available, T2WI-DWI-
Clinic models, the combination of radiomic models and clinically signif-
icant characteristics, were also constructed and validated utilizing the
same method as the single-sequence and combined radiomic models.

To compare the models we constructed, the Delong test was
performed on the AUCs of different models, and the net
reclassification index (NRI) was also calculated to determine the
incremental predictive value of a sequence when necessary.

Statistical Analyses
The Kruskal–Wallis test was utilized to evaluate the differences
among the discrete variable groups, while a chi-squared test was
applied to examine the differences between continuously variable
groups. Two-sided statistical tests were conducted and the statistical
significance was determined when P < 0.05. The Delong test was

TABLE 1. Scanning Parameters of Each MRI Sequence

Parameter Axial T2W Axial DWI

TR (msec) 4000 3200

TE (msec) 100 84

Slice thickness (mm) 3 3

Flip angle (�) 150 90

Intersection gap (mm) 3 3

Pixel spacing 0.75/0.75 1.95/1.95

Matrix 320 × 259 192 × 192

FOV (mm) 216 × 240 250 × 250

DWI = diffusion weighted imaging; T2W = T2 weighted;
TR = repetition time; TE = echo time; FOV = field of view.
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conducted to quantitatively compare the differences between the
AUCs of the two models. Decision curve analysis (DCA), aiming to
identify the maximum net benefit, was utilized to analyze the
model’s benefit to the patients. R software for Windows (v. 3.5.1;
https://www.r-project.org) was applied for all statistical analyses.

Results
Clinical Characteristics and Clinical Model
Performance
Patient characteristics are summarized in Table 2. Both
PSAD and PSA showed significant differences between high-
grade and lower-grade PCa (P < 0.001). However, age was
not identified as a significant factor (P = 0.203).

The performance and ROC curves of the clinical model
are shown in Table 3 and Fig. 2, which exhibited poor per-
formances in both the training (AUC: 0.696, SP: 0.641, SE:
0.686, ACC: 0.663) and test (AUC: 0.723, SP: 0.655, SE:
0.684, ACC: 0.669) cohorts.

Feature Discovery and Selection
In total, we extracted 1345 features from T2WI, DWI, and
the ADC map of the ROI: 265 first-order statistical features,
13 morphological features, and 1067 texture features.

After the feature selection step, 3, 5, and 8 key features
were finally reserved in T2WI, DWI, and the ADC map,
respectively, which are shown in Supporting Table A.2.

We found that most of the key features were textural fea-
tures, such as large area low gray level emphasis, zone variance,
and cluster prominence, which might reflect the heterogeneity
and invasiveness of the tumor. In addition, we found that the
first-order statistic features, such as the median gray level inten-
sity, 10th percentile, 90th percentile, interquartile range, kurto-
sis, etc., also showed significant contributions in predicting high-

grade PCa. The first-order statistic features described the voxel
intensities’ distribution, and our results may demonstrate that
the intensity of the signal in MRI is correlated with the grade
of PCa.

Single-Sequence Radiomic Model Construction and
Validation
Relying on the key feature sets, two single-sequence radiomic
models (T2WI and DWI) were constructed using LR, and the
involved radiomic scores of bpMRI are shown in Supplemen-
tary 5 and their violin plots are illustrated in Fig. A1. Both single-
sequence radiomic models showed significant effectiveness in
high-grade PCa prediction (P < 0.001). The quantitative metrics
and the ROC curves of the single-sequence models are shown in
Table 3 and Fig. 2, respectively.

Between the single-sequence radiomic models, the model
DWI achieved a relatively satisfactory result, with AUC of 0.801,
SP of 0.731, SE of 0.755, and ACC of 0.742 in the training
cohort, while AUC of 0.787, SP of 0.726, SE of 0.671, and ACC
of 0.699 in the test cohort. In contrast, the T2WI had a worse per-
formance in both the training and test cohorts (training cohort:
AUC = 0.712, SP = 0.701, SE = 0.642, ACC = 0.672; test cohort:
AUC = 0.645, SP = 0.691, SE = 0.544, ACC = 0.620), which is
also lower than the clinical model in the test cohort
(AUC = 0.723, SP = 0.655, SE = 0.684, ACC = 0.669).

Combined Model Construction and Validation
The combined radiomic model T2WI-DWI showed signifi-
cant effectiveness in high-grade PCa prediction (P < 0.001).
In the training cohort, it got a little better performance
(AUC = 0.811, SP = 0.713, SE = 0.786, ACC = 0.749) than
DWI. In the test cohort, it (AUC = 0.788) acquired roughly
the same AUC with DWI (AUC = 0.787). Specifically, the

TABLE 2. Clinical Characteristics of Patients in the Training and Test Cohorts

Training cohort Test cohort

Clinical characteristics LOW PCa HIGH PCa
Univariate analysis

P value* LOW PCa HIGH PCa
Univariate analysis

P value*

No. of patients 167 159 84 79

Age, years (Mean � SD) 72.15 � 6.95 72.76 � 6.80 0.57 (Z = 0.32) 72.51 � 7.39 74.49 � 8.10 0.20 (Z = 1.62)

PSA 1.71 × 10−9 (Z = 36.28) 8.62 × 10−7 (Z = 24.21)

<10 ng/mL 44 16 20 7

≥10 ng/mL 123 143 64 72

PSAD 1.53 × 10−9 (Z = 36.49) 2.66 × 10−6 (Z = 22.05)

<0.45 ng/mL2 62 23 34 15

≥0.45 ng/mL2 105 136 50 64

LOW PCa = lower-grade prostate cancer; HIGH PCa = high-grade prostate cancer; Z = the statistics; PSA = prostate-specific antigen;
PSAD = PSA density; SD = standard deviation; *Kruskal–Wallis tests were used to assess the differences among the discrete variable
groups, while chi-squared test was used to test the differences between continuously variable groups.
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SE of the latter was 0.671, which was slightly higher than the
former (SE = 0.658) in the test cohort (Table 3 and Fig. 2).
The NRI analysis revealed that there was no significant
improvement (NRI: −0.001; P = 0.492) in the addition of
the T2WI sequence into the DWI model.

T2WI-DWI-Clinic had a lower AUC of 0.780 compared
to T2WI-DWI (AUC = 0.788) in the test cohort (Table 3). To
evaluate the additional contribution of clinical characteristics to

the combined radiomic model, we further conducted a multivari-
able analyses for T2WI-DWI-Clinic, and found that they were
not significant (PSA: P = 0.251, PSAD: P = 0.519).

Comparison of Models
Figure 3 details the comparison results on the AUCs of different
models using the Delong test. There were no significant perfor-
mance differences between the single-sequence models and the

TABLE 3. Performance of Clinical and Radiomic Models

Model AUC SP SE ACC

Training cohort

Clinical model 0.696 (0.639, 0.753) 0.641 0.686 0.663

Single-Sequence radiomic model T2WI 0.712
(0.657, 0.768)

0.701 0.642 0.672

DWI 0.801 (0.754, 0.848) 0.731 0.755 0.742

Combined model T2WI-DWI 0.811 (0.766, 0.857) 0.713 0.786 0.749

T2WI-DWI-Clinic 0.813 (0.767, 0.859) 0.784 0.723 0.755

Test cohort

Clinical model 0.723 (0.645, 0.802) 0.655 0.684 0.669

Single-Sequence radiomic model T2WI 0.645 (0.560, 0.730) 0.691 0.544 0.620

DWI 0.787 (0.718, 0.857) 0.726 0.671 0.699

Combined model T2WI-DWI 0.788 (0.719, 0.858) 0.738 0.658 0.699

T2WI-DWI-Clinic 0.780 (0.710, 0.851) 0.762 0.595 0.681

Clinic = the clinical model; T2WI = the model of T2 weighted imaging; DWI = the model of diffusion weighted imaging and the appar-
ent diffusion coefficient map; AUC = the area under the receiver operating characteristic curve; SP = specificity; SE = sensitivity;
ACC = accuracy.

FIGURE 2: Comparison of single-sequence radiomic and combined model. (a) ROCs in the training cohort. (b) ROCs in the test
cohort. ROCs = receiver operating characteristic curves.
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clinical model in the training and test cohorts (training cohort:
T2WI: P = 0.680, DWI: P = 0.005; test cohort: T2WI:
P = 0.187, DWI: P = 0.233). Both the combined model T2WI-
DWI and T2WI-DWI-Clinic had significant advantages com-
pared to the single-sequence radiomic model T2WI in the train-
ing and test cohorts (P < 0.05). On the contrary, Both the
combined model T2WI-DWI and T2WI-DWI-Clinic were not
significantly different from the single-sequence radiomic model
DWI in the training and test cohorts (training cohort: T2WI-
DWI: P = 0.199, T2WI-DWI-Clinic: P = 0.187; test cohort:
T2WI-DWI: P = 0.924, T2WI-DWI-Clinic: P = 0.580). Also,
they showed significant improvement to the clinical model in the
training cohort (P < 0.05), but not in the test cohort (T2WI-
DWI: P = 0.225, T2WI-DWI-Clinic: P = 0.294). There were no
significant improvements in the addition of the clinical character-
istics to the T2WI-DWI (training cohort: P = 0.708, test cohort:
P = 0.337).

Clinical Use
The DCA results for the combined models and clinical
models are shown in Fig. 4, According to which, the single-
sequence model DWI and the combined models displayed
higher benefit to patients than a treat-all-as-high-grade
scheme or treat-none-as-high-grade scheme, while the T2WI
and clinical models exhibited poor benefit.

Discussion
In this retrospective study, we conducted a biparametric radiomic
analysis to identify high-grade PCa patients. The single-sequence
and combined models based on the ROI of the whole prostate
gland showed good predictive performance.

Our findings demonstrated that the single-sequence
model DWI had the best prediction performance for high-
grade PCa. By contrast, the addition of T2WI had relatively
little effect on predictive performance. The reason for this
may be that the DWI and ADC map indirectly reflect the
change of microstructure by detecting the degree of limited
diffusion of water molecules in human tissues and organs,24

while the T2 sequence was usually used to demonstrate the
anatomical structure of the prostate gland. However, when
adding clinical information to the combined radiomic model,
no performance improvements were found; the reason may
be that the clinical information was not significant in multi-
variable analysis.

Many previous studies have investigated textural ana-
lyses in GS staging using MRI. Wibmer et al25 investigated
the roles of the Haralick texture from MRI in differentiating
GS ≤7 vs. GS >7 and revealed the effectiveness of the ADC
map for GS staging. Vignati et al26 and Chaddad et al27

highlighted the value of texture features in predicting
GS. Turkbey et al28 and Donati et al29 proved that the ADC
map was useful in predicting the aggressiveness of PCa. In
good agreement with the previous research, our study further
supported the role of textural features and DWI with ADC
map in predicting high-grade GS. Additionally, we also found

FIGURE 3: Delong test for AUCs of two models. (a): Delong test for AUCs of two models in the training cohort; (b): Delong test for
AUCs of two models in the test cohort. A = the clinical model; B = the model of T2WI; C = the model of DWI; D = the combined
model of T2WI and DWI; E = the combined model of T2WI, DWI and clinically significant characteristics; AUC = the area under the
receiver operating characteristic curve.

FIGURE 4: Decision curve analyses of radiomic models and
clinical model.
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the first-order statistical features, such as the 10th percentile,
90th percentile, interquartile range, etc., were worthwhile in
predicting high-grade PCa.

Besides the textural analyses, previous studies also
focused on the combination of different MRI sequences.
Shimofusa et al30 conducted a retrospective study based on
the performance of three readers and reported that T2W with
DWI had more predictive ability in detecting PCa than T2W
alone, which matches well with our findings. Huadong et al31

Evaluated the capabilities of T2WI, DWI, and ADC map by
two radiologists, finding that the DWI with ADC map per-
formed better than T2WI in detecting PCa, which is consis-
tent with our results.

Furthermore, previous studies mainly analyzed the fea-
tures of tumor, involving sophisticated tumor segmentation.
In 2013, Tanaka et al32 found that the volume of the whole
prostate gland showed a significantly greater predictive power
than serum PSA for predicting PCa. In 2015, Peng et al33

reported that the prostate volumes had similar predictive per-
formance compared to central-gland volumes from T2WI for
the diagnosis of PCa. Inspired by their studies, we performed
an analysis on the whole gland, which contained both infor-
mation on the tumor and its surroundings.34 The gland seg-
mentation can avoid the mismatching phenomenon and
inaccurate segmentation caused by image deformation
between T2WI and DWI.35 Meanwhile, the gland segmenta-
tion is easier to achieve than the segmentation of tumor zone,
which may also support the application of automatic or semi-
automatic segmentation.36

Compared to the DWI and the combined models, the
clinical model was less accurate in both the training and test
cohorts, revealing the limited predictability of the present
clinical predictors for PCa. Previous relevant studies37,38 had
already proven that a certain correlation exists between the
referred clinical factors and PCa grading. Consistent with pre-
vious researches, our study indicated that PSA, PSAD were
relevant to GS. However, the nonsignificant results of them
in multivariable analyses and the few benefits of adding them
to the radiomic models revealed their limited predictive per-
formance compared to the radiomic models. In contrast to
the earlier findings,37 no significant correlation between age
and GS was found in our study. The inconsistency may be
due to the limited number of patients, and a further test of
our models should be performed on a large-scale cohort.

Limitations
First, this was a single-center study; the findings need to be
further validated in larger populations. Second, the PI-RADS
scoring system is an important MRI indicator of PCa in the
clinic, but we failed to incorporate the PI-RADS score in our
study. The reason is that the MRI sequences of some patients
do not meet the latest PI-RADS v2 grading guidelines. Third,

this study used a b-value of 800 s/mm2 for DWI. Other b-
value series should be considered in future studies.

Conclusion
Our study demonstrates that radiomics-based models incor-
porating high-dimensional bpMRI features have the potential
to identify high-grade PCa patients.
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