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Technical Report of MOSE (V2) 

MOSE is a PC-based 2D/3D simulator to predict bioluminescent signals detected by the CCD 
camera.  Given the bioluminescent sources inside biological tissues and optical parameters of 
simulated biological environment, MOSE traces the propagation process of each photon (or 
photon packet) using Monte Carlo (MC) method.  Compared with the first version of MOSE, the 
key improvement of the second version lies in that the input is not the simulated phantom data of 
animals but the real raw data scanned by computed tomography (CT).  After preprocess 
operation of the input (e.g. image segmentation, 3D image reconstruction and surface rendering), 
the real biological environment can be built from the raw data of animals tissues, which is 
constituted by a series of triangle meshes.  Except for monotonic bioluminescent sources, 
multi-spectral bioluminescent sources are also used to generate photons/photon packets with 
several kinds of energy in the second version.  After the propagation during the simulated 
biological environment, the residual energy of each photon packet transmitting out of the whole 
biological tissues is recorded by the MOSE.  When all the photons finish their transport, the 
absorption attribution schematics of the biological tissues are also easily obtained.  As a whole, 
the simulation of photons’ propagation in the second version is similar as that in the first version, 
including photon generation and photon transport in the simulated biological environment.  
However, there are completely different algorithms to realize the simulation due to the various 
inputs of these two versions.  In the technical report of MOSE (V2), these algorithms will be 
introduced in detail. 

1. Preprocess of Input Data 

Besides the geometrical input data composed of several building blocks (e.g. cylinder, ellipsoid in 
3D interface, or ellipse in 2D interface), real raw data from a series of CT slices are used as the 
input of the MOSE (V2).  This is the critical difference between MOSE (V1) and MOSE (V2), 
which bring entirely various algorithms of realization in these two versions.  After input, the 
main task of MOSE is to build the simulated biological environment, in which photon packages 
perform their transports.  The prior knowledge of the raw data includes the image width/height of 
each slice, the whole numbers of all the slices, the voxel width/height, the inter-slice distance, the 
gray levels and the optical properties of all the biological tissues.  The whole preprocess of raw 
data can be divided into two main steps: surface rendering and mesh simplification of each 
biological tissue.   

Surface rendering 

According to the gray levels of each tissue, it is easier to efficiently segment the target tissue from 
all the slices by threshold segmentation method.  Then, a series of triangle meshes compose of 
the target tissue will be obtained by marching cubes (MC) algorithms, which is known as surface 
rendering.  With segmentation and surface rendering algorithms, the surface of all the tissues 
whose grey level is between the threshold range (i.e. minTG  and maxTG ) can be reconstructed.  
Figure 1 (a) shows 2D slice of mouse thorax raw data as the input of MOSE; Figure 1 (b) and (c) 



respectively shows the re-sliced results including the sagittal section and the coronal section of the 
3D mouse thorax.  Figure 2 shows the bone surface (a), heart surface (b), and the combined 
surfaces of several tissues (c) obtained by surface rendering algorithms.  After each 3D 
biological tissue is expressed by triangle meshes, the whole virtual biological environment (shown 
as Figure 2 (c)) is constituted by combining all the triangle meshes.  These algorithms (i.e. 
segmentation, re-slice, surface rendering) are from the MITK (Medical Imaging ToolKit) 
developed by MPIG, Institute of Automation, Chinese Academy of Sciences 
(http://www.mitk.net).   

Mesh Simplification 

In general, there are more than 104~106 triangle meshes to describe a tissue of the mouse thorax 
after surface rendering.  As we all know, the more triangle meshes are used, the more time is 
needed for each photon packet’s propagation.  Therefore, the triangle meshes should be 
simplified to satisfy the real-time running speed of MOSE, which is significantly important in 
building the virtual biological environment for photon packets’ migration in real-time.  In MOSE 
(V2), a fast mesh simplification algorithm combining half-edge data structure and modified 
Quadric Error Metrics (QEM) is used to simplify the original triangle meshes obtained by MC 
algorithm.   

Data Structure.  To improve the running speed of the MOSE, the mesh data structure must be 
convenient for searching the target mesh according to certain requirements.  When half-edge 
mesh data structure is used, the adjacency queries between components of the mesh (e.g. vertices, 
faces and edges) can be quickly achieved and thus the run time is reduced remarkably.  
Experiments show that the initialization speed is 2 times as fast as original QEM, and the 
simplification speed is 2-4 times as fast as original QEM.  A mesh model described by half-edge 
structure is shown as Figure 3. 

Structures of half-edge, vertex and face in each triangle mesh is are defined as follows.   

Struct HalfEdge 

    { 
        Vertex * vert;    // the start vertex of the half-edge 
        HalfEdge * pair; // the adjoining half-edge of this one 
        HalfEdge * next; // the next half-edge in the same face 
        Face * face;    // the face involving the half-edge 

}； 

Struct Vertex 
{ 
    float vcoord[3]; // the coordinates of the vertex 
    float ncoord[3]; // the normal of the vertex 
    HalfEdge *he;   // an arbitrary half-edge emitting from the vertex 
}; 

Struct Face 



{ 
    HalfEdge *he;   // an arbitrary half-edge involved in the face 
}; 

Distance Function.  Distance function is so important that it directly decides the collapsing 
sequences of all half-edges during simplification and remarkably influences the quality of the 
simplified results.  Considering the characteristics of medical models, we integrated the 
information of normal vectors to the procedure of defining the distance function by adding the 
distance from the vertex to the tangential plane.  The distance function is used to present the cost 

of collapsing the half-edge 21PP : 
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where )( pDi  denotes the Euclidean distance between any point p and the ith mesh adjacent to 

half-edge 21PP ; )( pD
iTP  denotes the Euclidean distance between the point p and the tangent 

planes of vertex iP ; ∑=
i

iii SSw /  represents the weight of the ith mesh whose area is iS ; weight 

iPw  (i=1,2) is unusually chosen according to the number of the triangle meshes involving the 

vertex iP .   

Quadric Error Metrics.  In MOSE (V2), the distance function (1) based on Euclidean distance 
is used as the cost function of Quadric Error Metrics.  Any 2D plane M  can be described as 

0dunT =+ , where Tcban ][=  is the unit normal of the plane, Tzyxu ][=  presents any point 

inside the plane, and d  is a constant.  Then, the distance )(vD  between any point Tzyxv ][=  

in the 3D space and plane M  satisfies  
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Equation (2) can be described as  
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the triangle meshes involving vertexes 1P  and 2P  and the total distance function (1), the 
corresponding cost function is  
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Then, the optimal point p′  is calculated to minimize the cost function (4), which is the new point 

after collapsing the half-edge 21PP .  If matrix A is a nonsingular one, the coordinates v′  of new 

vertex p′  is usually obtained by 
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satisfying a group of partial differential equation 0zQyQxQ =∂∂=∂∂=∂∂ .  The cost of 

collapsing 21PP  is calculated by  
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When matrix A is a singular one, there is no optimal solution to equation (4).  Therefore, the 

coordinates v′  of new vertex p′  in the half-edge 21PP  minimizing )(vEQ ′  is chosen as the 

solution.  If 0vvAvv 21
T

21 ≠−− )()(  and 1a0 ≤≤ , the optimal vertex coordinates v′  is 

calculated by the following equations 
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If the optimal vertex can’t be searched, the new vertex is chosen from 1P  and 2P  which 

minimizes )(vEQ ′ . 

When obtaining the new vertex after merging the two vertexes of each half-edge and the cost of 
collapsing each half-edge, we can store all the half-edges into a heap according to their costs.  
When collapsing that edge, the minimum cost half-edge on the heap is chosen.  This method 
promises the minimum cost of mesh simplification and accelerates the running speed of mesh 
simplification.   

Error Analysis.  After mesh simplification, the vertexes, half-edges and faces are largely 
reduced.  Though the running speed of MOSE is improved, the error brought by mesh 
simplification must be analyzed to promise the precision of the whole program.  Here, we use 



geometry similarity metrics (GSM) to discuss the influence of mesh simplification. 

The first GSM is defined as 
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where ||||min)( wvMd
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∈
 denotes the distance between the vertex v  and a tissue model M  

composed by a series of triangle meshes, ||||•  means the Euclidean distance of two vectors.  
This GSM is used to obtain the maximum error between the original tissue model 1M  and the 
simplified tissue model 2M .  If the metrics satisfies ε≤),(max 21 MME , all the new vertexes in  

2M  generated by mesh simplification are located in the ε  scope of original vertexes in the 
original tissue model 1M . 

The second GSM is defined as 
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where MV  is the number of the vertexes in tissue model M .  This GSM presents the average 
error between the original tissue model 1M  and the simplified tissue model 2M . 

When the original tissue model 1M  with triangle meshes is a convex, the third GSM is defined 
according to the volume change between 1M  and the simplified tissue model 2M .  Take all the 
coordinates of the vertexes and the center R  of the bounding box as the prior knowledge.  It is 
easier to calculate the volume of each tissue model M  by the sum of all tetrahedrons whose 
vertexes are the three vertexes of one triangle mesh and the center R .   

InorOut Function 

The InorOut function is frequently used when running simulation. When a photon is generated, we 
call this function to compute which tissue it lies in. And this work must be repeated many times 
through the whole process of a photon’s propagation, because after each step of photon’s 
movement, the information about its position must be updated. In general, a photon moves about 
300 steps before it is terminated, and 106 photons are traced when running simulation. Therefore, 
the correctness and efficiency of InorOut function will significantly influence the performance of 
MOSE. Different strategies are applied to different situation to achieve faster speed with high 
accuracy. 

InorOut Strategy For Basic Shapes.   In earlier version of MOSE, the shape of light source 
and biologic tissues are represented by a combination of the basic geometric forms, such as the 
circle, ellipse, rectangle in two-dimensions, and the sphere, ellipsoid, cylinder in three-dimensions. 
Consequently, we can easily test whether a photon is inside an organ through comparing its 
position with the organ’s boundary which can be given by mathematical expressions. This strategy 



is the most efficient one within all we introduce. 

InorOut Strategy For 2D Polygons.   In MOSE V2, polygons formed by lines and arcs 
are taken as the basic elements for representation. Though much more intricate shapes can be 
described, the InorOut strategy for basic shapes no longer works. Therefore, a new strategy with 
higher adaptability is introduced. This strategy is based on the Jordan Curve Theorem. Essentially, 
it says that a point is inside a polygon if, for any ray from this point, there is an odd number of 
crossings of the ray with the polygon's edges. We call this algorithm the crossings test. 
Optimizations can be done as follows:  

1. Consider the test point to be at the origin and shoot a ray from it along the +X axis.  
2. Check the edges against this point, if the Y components of a polygon edge differ in sign, 

then the edge can cross the test ray.  
3. In this case, if both X components are positive, the edge and ray must intersect and a 

crossing is recorded.  
4. Else, if the X signs differ, then the X intersection of the edge and the ray is computed and 

if positive a crossing is recorded.  

Figure 4 shows the crossings test algorithm. 

When the test ray intersects one or more vertices of the polygon, the crossing point at the vertex 
will be counted twice, and the test will turn out to be failure. Different situations of vertices 
intersection are shown in Figure 5. This problem can be resolved by considering that whenever the 
ray would intersect a vertex, the vertex is always classified as being infinitesimally above the ray. 
In this way, no vertices are intersected and the running speed is speedier. 

InorOut Strategy For 3D Polyhedrons.  Real raw data from a series of CT slices are used 
as the input in MOSE V2, and after surface rendering and simplification process, triangle meshes 
are generated to formed polyhedrons which represent the tissues. Here, we extend the InorOut 
strategy from two-dimension to three-dimension based on the same theory.  

1. Run a semi-infinite ray up (e.g., along the +Z axis) from the point P.  
2. If P lies below the plane of F, project both P and F onto the plane of XOY 
3. Do the 2D point-containment test.  

If the ray intersects an edge/a vertex, we perturb P slightly and apply InorOut strategy again. Then 
if the meshes that share the same edge/vertex form a smooth surface (shown as Figure 5(a)), P 
must cross only one of them, on the other hand, if them form a protruding shape (shown as Figure 
5(b)), P must get even crossings. 

 

2. Photon Generation 



There are two main types of bioluminescent sources (BLS) expressed by a series of triangle 
meshes in MOSE (V2).  One is numbers of regular sources (RS) located in certain 3D geometric 
areas (e.g. sphere, cylinder), where these sources conform to given probability distribution 
functions (e.g. uniform, normal).  The other is numbers of artificial sources (AS) which are in 3D 
irregular areas generated by interactively modifying RS area according to users’ purpose.  
Position-sample and angle-sample are the two requisite steps, respectively deciding the incident 
position and the propagation direction of photon packets.  Given the distribution functions of 
BLS, the Monte Carlo method is used to randomly sample the incident position, the incident 
direction of photon packets, and incident energy of photon packets.  In the following sections, it 
is assume that these BLS are uniformly distributed in certain 3D areas for brevity.   

Position-sample 

With the triangle meshes describing the whole surface of the BLS area, it is easier to obtain the 
bounding box of this area (i.e. minmaxminmaxminmax ,,,,, zzyyxx ).  According to the uniform 
distribution, the direct sampling of photon position used by the Monte Carlo method is  
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where iξ  is pseudo-random number which is uniformly distributed over the interval )1,0( , and 

function 
⎪
⎩

⎪
⎨

⎧
=

boundarytheon2
out1
in0

zyxInorOut ),,(  is used to judge whether point (x, y, z) is 

inside the BLS area bounded by triangle meshes. 

Direction-sample (angle-sample) 

The azimuthal angle ϕ  and deflection angle θ  are the two critical parameters of the dynamic 
spherical coordinate system, describing the propagation direction of any photon packet.  In 
MOSE (V2), azimuthal angle ϕ  is uniformly distributed between 0 and 2π, so the 
direction-sample is given by 

ϕπξϕ 2= ， 

where ϕξ  is pseudo-random number which is uniformly distributed over the interval zero to one. 

The cosine of deflection angle θ  is uniformly distributed between 0 and 1, so the sample of 
θcos  is calculated by 



12 −= θξθcos , 

where θξ  is pseudo-random number which is uniformly distributed over the interval zero to one. 

The direction of travel with three directional cosines is specified by taking the cosine of the angle 
that the photon’s direction makes with each axis.  The direction (µx, µy, µz) is computed by 
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Energy-sample 

Because the tissue optical properties are wavelength/energy dependent, we will split the spectrum 
(500–760 nm) of multi-spectral BLS into N (e.g. N=32) consecutive segments during the Monte 
Carlo simulations.  Photon packets generated from the same segment is assumed to have the 
same wavelength/energy.  As all the energy levels are uniformly distributed, there are two ways 
to complete the simulations of multi-spectral BLS.  One is that photon packets of each energy 
level are respectively simulated by MOSE; the other is that energy sample is used to obtain the 
energy level of each photon packet.  After propagations of all photon packets terminate, the 
transmission and absorption values are recorded according to various energy levels.  According 
to the uniform distribution and MC method, the energy level can be sampled by )( E32IntE ξ= , 
where Eξ  is pseudo-random number which is uniformly distributed over the interval zero to one, 
and Int(x) returns the largest integer that is less than or equal to x. 

3. Photon propagation in biological tissues 

3.1  Photon Move To Next Interaction Site 

An efficient method chooses a variable step size for each photon step.  The step size of photon 
packet is calculated based on the randomly sampling as follows: 
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where sa µµ ,  are absorption coefficient and scattering coefficient of biological tissues 
respectively.   

In MOSE (V2), the spatial position and propagation direction are critical variables of each photon 
packet, which record the trace of photon migration.  It is convenient to describe the photon’s 
spatial position with the Cartesian coordinates ),,( zyx  and the directional cosines of travel 

),,( zyx µµµ  specified by the cosine of the angle between transport direction of photons and the 



three coordinate axes.  For a photon located at ),,( zyx , the relationship between traveling 

distance ∆s in the direction ),,( zyx µµµ  and the new interaction site ),,( zyx ′′′  is given by 
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3.2  Photon Absorption 

The technique of implicit capture assigns a weight, equal to unity, to each photon as it enters tissue.  
After each propagation step, the photon packet is split into two parts: a fraction is absorbed and 
the rest is scattered.  The fraction of photon packet absorbed is 
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where α is the single particle albedo.  One part of the photon weight w∆  is stored into 

absorption matrix ),,(_ zyx iiixyzA  in MOSE at the local grid element.  Accordingly, the new 

photon weight w’ is given by ww α=' , which is the fraction of the photon packet scattered. 

3.3  Photon Termination 

There are two ways for photon packets stopping propagation.  On the one hand, photon packets 
are totally absorbed by tissues; on the other hand, photon packets reach CCD camera and are 
absorbed by detectors.  When photons terminate, the flag named “dead” is set to 1.  Otherwise, 
it is 0, which means photon is alive now.  A technique named Russian roulette is used to 
terminate a photon packet once its weight drops below a specified threshold (e.g. 0.001).  
Russian roulette gives the packet one chance in m (e.g. m=10) of surviving with a weight of mw.  
If the packet does not survive the Russian roulette, the photon weight is reduced to 0 and the 
photon is terminated.  Russian roulette is expressed by formula as follows: 
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where ξ is the uniformly init pseudo random number. 

3.4  Photon Scattering 

In MOSE (V2), a normalized phase function describes the probability density function for the 



azimuthal and longitudinal angles of a photon packet when it is scattered.  Azimuthal angle ϕ  

is uniformly distributed between 0 and 2π, so the direction-sample is given by ϕπξϕ 2= .  The 

probability distribution for the cosine of deflection angle θcos  is described by 
Henyey-Greenstein function  
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so the direct sample of θcos  is calculated: 
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where g  is the anisotropy factor of the medium.  ϕξ  and θξ  are pseudo-random numbers 

uniformly distributed over the interval zero to one. 

In 3D MOSE (V2), with the moving spherical coordinate system and the transform between 

coordinates system, the new propagation direction of photon packet ),,( zyx µµµ ′′′  is computed by 
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3.5  Photon Hit The Boundary Of Tissues 

During the transportation of a photon packet, it may hit the boundary of the current tissue, where 
the boundary may either be an interface between the tissue and the ambient medium or an 
interface between the current tissue and another adjoining tissue.  The photon packet can be 
either internally reflected back into the current tissue by the boundary or transmit across the 



boundary into the adjoining tissue.  Then, the photon propagation will continue.  When the 
photon packet escapes all biological tissues to the ambient medium, it will be observed as internal 
reflectance or transmittance depending on the incidence angle onto the boundary.  In the 
following section, we compute critical angle cα , the cosine of incident angle iα , cosine of 
transmission angle tα , direction of photon packets before and after hitting the boundary. 

Incident Angle  

After preprocess of the input data, each biological tissue can be described by a series of triangle 
meshes.  Three vertices’ coordinates (i.e. ),,( 1111 zyxP , ),,( 2222 zyxP , and ),,( 3333 zyxP ) and the 
normal N  of each triangle mesh are stored into a matrix, which can efficiently accelerate the 
running speed of MOSE.  If the photon packet whose propagation direction is expressed as I  
hits the boundary triangle mesh at point P , the cosine of photon’s incident angle at point P  is 

given by 
NI
NI

i ×
•

=αcos . 

Transmission Angle  

Snell’s law indicates the relationship between the angle of incident iα , the angle of transmission 

tα , the refractive indices of the media that the photon packet is incident from, in , and transmitted 
to, tn : 

ttii nn αα sinsin = . 

The cosine of transmission angle is calculated by: 
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Critical Angle  

Before the photon packet is decided whether it is internally reflected or transmitted, several 
parameters must be calculated such as critical angle cα  and )( iR α .  

Critical angle (possible only when ni > nt) is calculated by formulas as follows: 
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where ni, nt are refractive indices of media which photon is incident from and transmitted to 
respectively.  If iα  is larger than the critical angle, 1)( =iR α .  Otherwise, )( iR α  is 
calculated by Fresnel’s formulas: 
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where ti αα  ，  are incident angle and transmission angle at the boundary respectively.  If 
)( iR αξ ≤ , the photon packet is internally reflected.  If )( iR αξ > , the photon packet transmits. 

Internally reflected 

Take example for internal reflection at boundaries of tissues in 3D MOSE.  If the photon packet 
is internally reflected, the photon packet stays at the boundary and its directional cosine 

),,( zyx µµµ  must be changed.  The geometry of photon internal reflection is shown as Figure 4.  

),,( zyx  are the coordinates of photon hitting the boundary.  Vectors ),,( zyxI µµµ  and 

),,( zyxR µµµ ′′′  describe incident direction cosines and internally reflected direction cosines 

respectively.  Vector ),,( nznynxN µµµ  expresses the direction of outside normal at point 

),,( zyxP .  Through the vectors schematic, we can get the equation as follows: 
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Therefore, the direction cosines of internally reflected photons ),,( zyx µµµ ′′′  are given by 
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Transmitted  

Take example for transmittance at boundaries of tissues in 3D MOSE.  If the photon packet 
transmits from the tissues to outside medium, the directional cosines of photon packet are changed 

from vector ),,( zyxI µµµ  to vector ),,( T
z

T
y

T
xT µµµ .  tα  is the transmittance angle of photon 

packet.  Other parameters are the same as what the internally reflected defines.  The geometry 
of photon transmission is shown as Figure 4.  Through the vectors schematic, we can get the 



equation as follows 
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),,( T
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T
x µµµ  may also be easily calculated by those above formulae according to the attributions 

of vector computations.  When the photon packet reaches a triangle mesh whose index is i, the 
residual photon weight of it will be stored into the transmittance matrix )(iTmesh  by the equation 

wiTiT meshmesh += )()( .  After all photon packets terminate their propagations, the matrix meshT  will 
present the transmittance distribution on the boundary of the whole biological tissue surface. 

3.6  Scored Physical Quantities 

Internal photon distribution 

During the simulation, absorbed photon weights are scored into the absorption array ),,( zyxxyz iiiA , 

where zyx iii ,,  are the indices for grid elements of x, y, z axes.  The raw data ),,( zyxxyz iiiA  

provides total weight in each grid element in 3D grid system.  The total weight absorbed in the 
tissues is computed as follows: 
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Then, all these quantities have been scaled appropriately to get the densities: 
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where dzdydx ,,  are grid separations of x, y, z axes respectively, N is the total number of photon 
packets.  Given the total energy of all incident photon packets incidentE , the total energy absorbed 
by biological tissues is calculated: 

incidentA EAE ×=  



Transmittance  

After tracing total number of photon packets (N), the raw )(iTmesh  offers the total photon weight 
in each grid element in 3D grid system.  The total transmittance is computed by 
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Then, all these quantities have been scaled appropriately to get the densities: 
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where dzdydx ,,  are grid separations of x, y, Z axes respectively.  Given the total energy of all 
incident photon packets incidentE , the total energy emitting out of the biological tissues is 
calculated: 

incidentT ETE ×= . 

With the structure and geometric parameters of CCD camera, the energy absorbed by detectors 
can be easily computed. 

3.7  Estimation of MOSE Precision 

The results of MOSE represent an average of the contribution from many histories sampled during 
the course of all the photons propagation.  An important quantity equal in stature to the results of 
MOSE is the statistical error.  From it, we not only can gain insight into the quality of the result, 
but also can determine if a tally is well behaved.  This section tells us how to calculate the 
estimated means and relative errors of the results of MOSE in order to ensure a well-behaved and 
meaningful tally. 

Suppose )(xp  is the probability density function of the random variable x  being estimated. 
The true answer (or mean) )(xE  is the expected value of x , whose function is 

∫== dxxxpxxE )()( .  The quantity )(xE  is seldom known because )(xp  is not known 

directly but can be estimated by Monte Carlo through the random walk process as x , which is 
given by  
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where ix  is the value of x  sampled from )(xp  for the ith history and N  is the number of 

histories calculated.  The Strong Law of Large Numbers states that if )(xE  is finite, x  tends 



to the limit )(xE  as N  approaches infinity. 

The variance of the population of x  is given by 

∫ −=−= 2222 ))(()()())(( xExEdxxpxExο . 

The square root of the variance is ο , which is the standard deviation of the population of scores. 
Though ο  is seldom known, it can be estimated as S, given by (for large N) 
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The quantity S  is the estimated standard deviation of x  based on the values of ix  that were 

actually sampled.  The estimated variance and the estimated standard deviation of x  are 
respectively given by the following formulas: 
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Then the relative error in MOSE can be calculated:  

x
 xS

R＝ . 

It is important to note that xS  is proportional to N/1 , which is the inherent drawback to the 

Monte Carlo method.  For example, to halve xS , four times the original number of histories 

must be calculated. Hence, a large number of histories and a large amount of computation time 
must be needed to get a more accurate result from Monte Carlo.  

4. Graphic Editing Tools 

Superquadrics  

The superquadric models were introduced into the computer graphics field in 1981.  There are 
four types of superquadric models: superellipsoid, supertoroid, and superhyperboloid with one or 
two sheets.  Among these four types, only the superellipsoid defines a closed surface without 
holes, which is always consistent with the condition of real environment.  Therefore, the 



superellipsoid is commonly referred to as the superquadric.  In our simulation platform, the 
superellipsoid are used as a particular building block.   

A superellipsoid surface is defined by an implicit equation: 
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where radius parameters zyx rrr ,,  denote the scaling factors on x, y and z axes, squareness 

parameters 21 εε ,  are the shape parameters related to the squareness/roundness/pinchedness in the 
longitudinal and horizontal directions respectively.  Another concise definition of the 
superellipsoid in the sphere coordinate system is described as 
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where ωη,  are latitude and longitude angles with 22 // πηπ ≤≤− , πωπ ≤≤− , and )sgn(x  
is the sign function.  By varying the value squareness parameters 21 εε , , a wide range of shapes 
can be conveniently generated.  Roughly speaking, if a squareness parameter is significantly less 
than 1, the geometry is somewhat square; if it is close to 1, the object is quite round; if it is close 
to 2, the shape has a flat bevel; if it is greater than 2, the structure is pinched.  Figure 5 presents a 
series of the shapes that can be obtained from various combinations of squareness parameters.  
With certain shape parameters 21 εε , , the superellipsoid can be transferred into regular geometric 
graphics.  For instance, if 10 21 == εε , , the superellipsoid is a cylinder; if 11 21 == εε , , the 
superellipsoid is a ellipsoid.  

When the building blocks are the superellipsoid, it is easy to judge whether a point ),,( zyxp  is 
inside of the shape according to the inside-outside function: 
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If function 1zyxF <),,( , point p  is inside the superellipsoid; if 1zyxF =),,( , p  is on the 
boundary of the superellipsoid; if 1zyxF >),,( , p  is inside the superellipsoid. 

2D interactive graphic editing tool 

In 2D simulation environment, any 2D irregular bioluminescent source can be described by 2D 
interactive graphic editing tools and can be conveniently modified by interactive operations.  
Shown as Figure 6, any 2D shape is determined by the position relationship of all vertexes (i.e. 
small solid circles on the contour).  After several original vertexes are given according to the 
requirements or the prior knowledge of operators, the original contour (Figure 6 (a)) of the 



bioluminescent source is formed by smoothly connecting the adjoining vertexes with polynomial 
curves or arcs.  Then, the original contour can be conveniently modified by adding, deleting, and 
moving vertexes (Figure 6 (b) and (c)).  For example, if one part of the local contour is smooth, 
several vertexes are enough to depict its fine features; if it is rough (e.g. sharp protuberances and 
hollows), more vertexes are needed to describe the details of the local contour, shown as Figure 6 

(d). Given a point P , the line PL  with certain direction can be easily obtained.  The number 

N  of intersections between PL  and the contour described by 2D interactive GET is used to 

determine whether the point P  is inside of the contour.  If N  is odd, the point P  is inside 
the shape; if N  is even or zero, the point P  is outside the shape; if the point P  satisfies the 
function of contour formed by polynomial curves or arcs, it is on the boundary of the shape. 

3D interactive graphic editing tool 

The original shape of any 3D irregular object is usually chosen as a sphere or a cylinder whose 
parameters are determined according to the prior knowledge of operators.  In our simulation 
platform, the default original shape of the 3D bioluminescent source is a sphere, and the Bezier 
cubic spline mode is applied as the interactive editing tool.  First, the volume of interest (VOI) of 
the original object is selected, which defines the local surface to be modified.  Then, the selected 
local surface of the original 3D object can be dragged via a so-called control point cp  along any 
direction, which can be repositioned interactively.  The position of the original control point cp  
is determined by the shape of the local surface LS  which needs to be modified.  When the 
position of control point is changed, the whole local surface is modified accordingly by a Bezier 
cubic spline mode.  

In 3D simulation environment, multiple Bezier cubic splines are used to describe the modified 
local surface inside the VOI of the 3D object.  To make this 3D interactive mode easier to be 
understood, we begin with the 2D Bezier cubic spline curve.  The 2D Bezier cubic spline curve 
can be described algebraically by a Bernstein polynomial of degree 3[10]:  
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where t varies between 0 and 1.  Figure 7 shows the 2D typical Bezier cubic splines. From the 
equation (4), it is evident that four points 0p , 1p , 2p , and 3p  are needed to determine the 
shape of the spline curve.  The two end points 0p  and 3p  (shown as Figure 7) are fixed, 
because they are the boundary points of the selected local surface of the original object.  
However, it is still difficult to interactively operate on the other two points 1p  and 2p  
simultaneously.  The solution is to search one control point cp  to express two points 1p  and 

2p .  In our simulation platform, we chose points 1p  and 2p  are the midpoints of line 
segments c0 pp  and c3 pp  respectively.  Then, equation (4) can be rewritten as:  
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Because the two points 0p  and 3p  are known, the whole Bezier cubic spline can be determined 
by the control point cp  only.  When the control point is moved, the local surface LS  can be 
conveniently modified accordingly (shown as Figure 7 (b)).  

The mechanism of 3D surface modification is the same as that of 2D surface modification.  The 
difference lies in that 3D local surface is made up of many Bezier cubic splines with the same 
control point cp .  Known the 3D original local surface to be modified and a series of initial 
Bezier cubic splines determined by the control point, the 3D local surface of the object is modified 
by a group of Bezier cubic splines in 3D simulation environment (shown as Figure 8).  

In our 3D simulation platform, all the 3D shape including the biological tissues and 
bioluminescent sources are described by a series of triangle meshes.  It is crucial to judge 
whether a point is inside a 3D irregular shape.  Given a point P  and a certain irregular contour, 

the line PL  with certain direction can be easily obtained.  The number N  of intersections 

between PL  and the contour described by 3D interactive graphic editing tools is used to 

determine whether the point P  is inside of the contour.  If N  is odd, the point P  is inside 
the shape; if N  is even or zero, the point P  is outside the shape; if the point P  satisfies the 
function of contour composed of many triangle meshes, it is on the boundary of the 3D shape. 

Results with interactive graphic editing tools 

All the interactive graphic editing tools presented above have been integrated into our simulation 
platform, with which the irregular 2D/3D shapes can be conveniently generated and modified 
according to the interactive operations and prior knowledge of the operator.  Take example for 
the modification of 3D bioluminescent source.  The input of our simulation platform is a series of 
slices obtained from micro-CT.  After segmentation, surface rendering and mesh simplification, 
the virtual biological environment can be built from the input data.  For example, the purple 
graphics indicates the lib and heart of the mouse thorax with transparent effect in Figure 9.  
When the virtual biological environment is built, a control panel is used to give the parameters of 
3D original bioluminescent source, such as, the coordinates of the center, the scaling factors on x, 
y and z axes, the original shape and distribution function of the object.  With the movement of 
slides, the position and dimensions of the bioluminescent source can be easily modified.  Figure 
9 (a) shows the biological tissues and the original shape of 3D bioluminescent sources; Figure 9 (b) 
presents the movement of the source generated by the modification of the parameters; and Figure 
9 (c) denotes the change of source dimensions. 

The 3D local surface of the bioluminescent source can be easily modified by the Bezier cubic 
spline mode.  In Figure 10, the red sphere is the original bioluminescent source and the yellow 
local surfaces are generated by Bezier cubic splines. 

 



5. Software Design 

Functions and Interface   

Compared with MOSE (V1), MOSE (V2) has more built-in simulation functions and a friendlier 
interface handling input parameters, output files, and display.  In particular, the simulation of real 
biological tissue environment has been realized and integrated into the same program framework 
as 2D/3D simulation with geometric building blocks in MOSE (V2).  These three modes can be 
switched by pressing two buttons on the interface conveniently.  MOSE (V2) implements all the 
functions described in the above sections via a user-friendly interface created with the Visual C++ 
programming language and OpenGL techniques.   

After preprocess of the volume data obtained from micro-CT, each biological tissue and simulated 
biological environment can be clearly displayed according to operators’ command.  And the 
bioluminescent sources inside biological tissues are added in the simulated biological environment.  
With the control panel of the interface (shown in Figure 9) and the 3D interactive graphic editing 
tools (introduced in Section 4), operators can easily modify shapes of the original sources formed 
by 3D geometric building blocks (e.g. sphere, cylinder).  Before the simulation, one can choose 
the display mode of the photon propagation in biological environment: tracing all the photon 
propagation paths; only tracing those photons that reach detectors; only tracing the photons with 
selected indexes.  We can then observe the photon transport through the biological tissues in 
real-time.  The transport paths of different photon packages are highlighted in different colors.  
While tracing photon packets, the operator may stop and restart the display of tracing by pressing 
a switch button at any moment.  Once the simulation is finished, we can retrieve output files 
recording the absorption data, transmission data, running time, and so on.  When a pseudo color 
scheme is chosen, the distribution maps of absorption and transmission can be graphically 
displayed as needed. 

Search Strategy 

In general, the simulated biological environment is quite complicated, because there are several 
tissues described by a series of triangle meshes.  As a result, given a point inside the simulated 
biological environment, it is usually time-consuming to find the right tissue containing the point.  
Two type of table search strategy were utilized to speed up the process. 

The first table search is usually performed to judge the location of any bioluminescent photon.  
After preprocess of the volume data obtained from micro-CT, the bounding-box of each biological 
tissue is calculated, which includes the minimum values and maximum values of the tissue along 
three axes of Cartesian coordinates.  According to these building-boxes and the indexes of tissues, 
three tables 1T , and 2T  are generated respectively.  With the pre-specified separations along the 
Cartesian coordinates, the whole simulated biological environment can be divided into a series of 
voxeles.  Table 1T  is a 3D matrix with the same size of the voxel matrix, whose values are the 
indexes of biological tissues containing the voxel.   



The second table search is used in InOrOut function.  Moreover, it is also applied when photon 
hitting any tissue boundary during its propagation in biological environment.  Because each 
biological tissue is made up of a series of triangle meshes, it is tremendously time-consuming to 
calculate whether the photon trace and each triangle mesh intersect.  Table 2T  offers a fine 
strategy to reduce the index range to be searched when calculating the intersection on the 
boundary.  To quick search the intersection between the photon trace and the biological tissue, all 
triangle meshes of each biological tissue can be divided into M  regions.  All indexes of 
triangle meshes in each region are saved into Table Mi1iT2 ≤≤)( .  Then, if the photon hits 
the tissue boundary in Region j , only the triangle meshes whose indexes are recorded in )( jT2  
will be used to calculate the intersection.  With the result of table search, the number of triangle 
meshes needed to be searched is remarkably reduced.  Then, with three vertexes of each triangle 
mesh, it is easy to obtain the intersection on the boundary.  As a result, the running speed of 
dealing with boundary effect is largely improved.  

 


