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Background: Distant metastasis is the primary cause of treatment failure in locoregionally advanced nasopharyngeal carci-
noma (LANPC).
Purpose: To develop a model to evaluate distant metastasis-free survival (DMFS) in LANPC and to explore the value of
additional chemotherapy to concurrent chemoradiotherapy (CCRT) for different risk groups.
Study Type: Retrospective.
Population: In all, 233 patients with biopsy-confirmed nasopharyngeal carcinoma (NPC) from two hospitals.
Field Strength: 1.5T and 3T.
Sequence: Axial T2-weighted (T2-w) and contrast-enhanced T1-weighted (CET1-w) images.
Assessment: Deep learning was used to build a model based on MRI images (including axial T2-w and CET1-w images)
and clinical variables. Hospital 1 patients were randomly divided into training (n = 169) and validation (n = 19) cohorts;
Hospital 2 patients were assigned to a testing cohort (n = 45). LANPC patients were divided into low- and high-risk groups
according to their DMFS (P < 0.05). Kaplan–Meier survival analysis was performed to compare the DMFS of different risk
groups and subgroup analysis was performed to compare patients treated with CCRT alone and treated with additional
chemotherapy to CCRT in different risk groups, respectively.
Statistical Tests: Univariate analysis was performed to identify significant clinical variables. The area under the receiver
operating characteristic (ROC) curve (AUC) was used to assess the model performance.
Results: Our deep-learning model integrating the deep-learning signature, node (N) stage (from TNM staging), plasma
Epstein–Barr virus (EBV)-DNA, and treatment regimens yielded an AUC of 0.796 (95% confidence interval [CI]:
0.729–0.863), 0.795 (95% CI: 0.540–1.000), and 0.808 (95% CI: 0.654–0.962) in the training, internal validation, and exter-
nal testing cohorts, respectively. Low-risk patients treated with CCRT alone had longer DMFS than patients treated with
additional chemotherapy to CCRT (P < 0.05).
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Data Conclusion: The proposed deep-learning model, based on MRI features and clinical variates, facilitated the predic-
tion of DMFS in LANPC patients.
Level of Evidence: 3.
Technical Efficacy Stage: 4.

J. MAGN. RESON. IMAGING 2020.

NASOPHARYNGEAL CARCINOMA (NPC) is an
uncommon malignancy worldwide, and is highly associ-

ated with a specific endemic distribution as Epstein–Barr virus
(EBV) infection.1,2 Approximately 129,000 new NPC patients
were diagnosed worldwide in 2018,3 of which 70% were classi-
fied as locoregionally advanced stage (stage III-IVB), which is
associated with poor treatment response and unfavorable prog-
nosis.4,5 Although the local recurrence rate of NPC has been
significantly reduced by radiotherapy and concurrent
chemoradiotherapy (CCRT) treatment strategies, distant
metastasis (DM), which occurs in more than 30% of NPC
patients, is a leading cause of treatment failure.6 Moreover, the
treatment response of NPC patients with DM is unsatisfactory,
with a low 5-year survival rate of less than 5%.7

To improve distant metastasis-free survival (DMFS) in
locoregionally advanced NPC (LANPC), the addition of
induction (IC) or adjuvant (AC) chemotherapy to CCRT has
been proposed.8,9 However, the effect of adding IC or AC to
CCRT remains controversial due to the inconsistent results of
several randomized controlled trials. A phase III study of
172 patients with advanced NPC found no significant differ-
ences between IC (combined gemcitabine, carboplatin, and
paclitaxel [GCP]) plus CCRT and CCRT alone with regard to
survival or locoregional control.10 In contrast, multicenter
phase III trials reported that IC plus CCRT could marginally
improve distant failure-free survival in LANPC.11 Thus, identi-
fying risk factors to predict DMFS in LANPC patients is criti-
cal to aid clinicians in developing effective treatment strategies.
Node (N) stage, plasma EBV-DNA, and micro-RNAs
(miRNAs) are common risk factors used as predictors for NPC
therapeutic efficacy in clinical practice.12,13 However, these fac-
tors may not adequately reflect intratumoral differences in
NPC. Previous studies have noted that the expression of cer-
tain genes could reflect intratumoral heterogeneity,14 and that
gene expression was closely associated with NPC prognosis and
treatment.15 A gene expression signature4 consisting of 13 genes
could be used to predict the risk of DM in LANPC patients
and provide a reference for LANPC patients who could benefit
from CCRT. However, an investigation of new factors that
can reflect intratumoral heterogeneity is still urgently needed to
predict DMFS in LANPC patients.

Radiomic features, which reflect the translation of medi-
cal images into quantitative image features via machine-
learning algorithms, are able to capture intratumoral heteroge-
neity in a noninvasive manner.16 For example, the result of
our previous study on extracting features from magnetic

resonance imaging (MRI) showed that the radiomic features
reflecting intratumoral heterogeneity were associated with
advanced NPC.17 Deep learning is a subset of machine learn-
ing that can rapidly extract information from different types
of images using deep convolution neural networks, which
comprise a powerful complement to clinical variables for
more precise diagnosis and treatment.18,19 Compared to con-
ventional radiomic methods that extract quantitative features
manually, deep learning can mine available information by
transforming the feature engineering step into a learning
step.20 Recently, deep-learning models have been successfully
applied to both solid tumors and nontumor disease, such as
epidermal growth factor receptor mutation status prediction
from lung cancer computed tomography (CT) images,21 clas-
sification and mutation prediction from non–small cell lung
cancer histopathology images,22 and classification of pulmo-
nary tuberculosis from chest radiography.23 In NPC, recent
studies have used deep learning to automatically segment the
primary tumor volume based on MR or CT images.24,25

However, it is unclear whether deep-learning models can pre-
dict DMFS in LANPC patients who have received CCRT
with or without additional chemotherapy.

The purpose of this study was to build an MRI-based
combined model as a novel tool for pretreatment prediction
of DMFS in LANPC using data from LANPC patients who
have received CCRT with or without additional chemother-
apy. We also investigated the value of additional chemother-
apy to CCRT for different risk groups.

Materials and Methods
This retrospective study was approved by the Institutional Review
Board of each center. Written informed consent was waived by the
Institutional Review Board. In our trial, we retrospectively included
patients with incident, primary, and biopsy-confirmed NPC from
two independent centers. A total of 188 patients admitted from
March 2009 to December 2018 at Hospital 1 and 45 patients
admitted from August 2008 to December 2016 at Hospital 2 were
included. Patients were enrolled in the study if they met the follow-
ing criteria: 1) previously untreated, biopsy-proven NPC; 2) stage
III-IVb disease according to the 7th American Joint Committee on
Cancer (AJCC) TNM staging manual26; 3) underwent a pre-
treatment and prebiopsy nasopharyngeal and neck MRI scan
(including axial T2-weighted [T2-w] images and contrast-enhanced
T1-weighted [CET1-w]); 4) underwent a complete pretreatment
physical examination, including chest radiography, abdominal ultra-
sound, skeletal scintigraphy, or whole-body fluorodeoxyglucose posi-
tron emission tomography (PET) / computed tomography (CT),
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blood and biochemical profile, and plasma EBV DNA level; and 5)
regular follow-up: every 1–3 months during the first years, every
6 months in years 2–5, and annually thereafter. The exclusion
criteria were as follows: i) evidence of distant metastasis at initial
treatment; ii) history of MRI contraindications; iii) history of previ-
ous or synchronous malignant tumors; or iv) previous treatment
for NPC.

Eligible patients at Hospital 1 were randomly divided into a
training cohort (n = 169) and an internal validation cohort (n = 19)
at a ratio of 9:1. Eligible patients at Hospital 2 were assigned to an
external testing cohort (n = 45). The baseline clinical characteristics
that were collected included age, sex, tumor (T) stage, N stage, his-
tological subtype, plasma EBV-DNA, and treatment regimen(s). The
T and N staging was carried out according to the TNM staging.
The histological tumor subtypes were categorized according to the
World Health Organization (WHO) standards as follows: type I
(differentiated keratinizing carcinoma), type II (differentiated non-
keratinizing carcinoma), and type III (undifferentiated non-
keratinizing carcinoma).27

The primary endpoint was DMFS, which was calculated from
the date of diagnosis to the date of distant metastasis detection or
the date of censoring (the date on which the patient was last known
to be distant metastasis-free). Patients were censored if they were still
alive on December 31, 2018, which was the date of the last follow-
up. If DM was suggested by any medical reports (chest radiographs,
abdominal ultrasound, PET/CT, and/or skeletal scintigraphy), then
the potentially involved sites underwent additional examinations,
including CT, MRI, PET/CT, and/or biopsy. If the presence of
DM was immediately confirmed by these additional examinations,
the diagnosis was accepted. If additional examinations were not feasi-
ble or yielded negative results, follow-up examinations were per-
formed every 3 months for at least 12 months. Patients were
considered to have locoregional disease if the lesion remained
unchanged during the follow-up period. If lesion enlargement was
observed, DM was considered present. The details of the treatment
protocols are presented in Supplementary Methods 1.

MR Image Acquisition and Quality Assessment
Overall, 189 patients underwent nasopharyngeal and neck MRI with
a 1.5T MR scanner (Optima, TwinSpeed, GE Healthcare, Milwau-
kee, WI, n = 105; Achieva, Philips Healthcare, Best, Netherlands, n
= 84), and 44 patients underwent nasopharyngeal and neck MRI
with a 3.0T MR scanner (Discovery, TwinSpeed, GE Healthcare, n
= 32; Ingenia, Philips Healthcare, n = 12). Gd-DTPA (Magnevist,
Bayer Schering, Berlin, Germany) was administered as a bolus
through a peripheral vein (dosage: 0.1 mmol/kg; rate: 2.0 mL/s
followed by a 10-mL flush of saline) via a power injector at the
eighth dynamic scan. The MRI acquisition parameters are presented
in Table 1. Axial T2-w and CET1-w digital imaging and communi-
cations in medicine (DICOM) images were retrieved from the pic-
ture archiving and communication systems (PACS).

Since the images were retrieved from different hospitals, the
quality of the images occasionally differed. Thus, to assess image
quality objectively and quantitatively, the structural similarity index
(SSIM) was used. The SSIM combined three features: luminance
comparison, contrast comparison, and structural comparison. SSIM
analysis was performed in Python (https://www.python.org/), and

the detailed calculation methods were referenced from the study by
Wang et al.28 In the current study, the SSIM of each corresponding
patch under the sliding window of the two pictures was calculated.
The pictures of a patient in Hospital 1 were successively matched
with the pictures of all patients in Hospital 2. Then the mean value
of the overall SSIM of each patient was calculated and termed
MSSIM. For more than 85% of the patients MSSIM ≥0.9 was con-
sidered to indicate good consistency of image quality.

MR Image Segmentation and Preprocessing
ITK-SNAP software (open source software; https://itk.org/) was used
to manually segment regions of interest (ROIs) in both axial T2-w
and CET1-w images. All slices of the entire tumor were delineated
by a radiologist with 12 years of experience in head and neck MR
image interpretation (reader 1, F.J.). If the tumor could invade the
skull base, the radiologist would reference precontrast T1-w and
CET1-w images to segment ROIs. After 1 month, 30 patients were
randomly selected and the images were segmented again by reader
1 and by another radiologist with 11 years of clinical experience
(reader 2, W.F.) to evaluate the intra- and interobserver reproduc-
ibility of radiomic features across segmentations. An example of the
ROIs segmentation is shown in Fig. 1.

For natural images, there are tens of millions of annotated
public datasets. During the training model, the whole image was
directly used as the input of deep-learning networks, which leads to
very good performance. For medical images, the sample size was typ-
ically smaller than that for natural images. Therefore, we removed
the background noise and used only the tumor area segmented by
radiologists so that the network learning could learn the essential fea-
tures more rapidly. We removed the background by setting the
image intensity beyond the tumor area to 0 using the “NumPy”
packages in Python. In addition, because the MR images in this
study were scanned by different MRI scanners using different scan
protocols, the intensity ranges of the images were normalized from
0–255, also using the “NumPy” packages in Python. Finally, to
eliminate different distributions of grayscale values, we also per-
formed histogram equalization in Python using the “OpenCV” pack-
ages (https://pypi.org/project/opencv-python/).

Deep-Learning Model Construction
We constructed a deep convolution model based on the CET1-w
and T2-w images to predict the DMFS of LANPC patients. Deep
convolutional neural networks are mostly used in image processing
networks—such as visual geometry group (VGG) networks, residual
networks (ResNet), and dense networks (DenseNet)—which are
widely used for both natural and medical images. In this study, our
residual network was derived from a 50-layer residual network archi-
tecture, including 49 convolution layers and a fully connected
layer.29 The network structure is shown in Supplementary Methods
3. As with the original residual network architecture, batch normali-
zation was used after each convolutional layer. This forced network
activations to follow a unit Gaussian distribution after each update,
preventing internal covariate shifts and overfitting.

For training images, we selected the slice with the largest
tumor area annotated derived from the corresponding ROIs using an
automatic algorithm. This algorithm was used to calculate the dot
product of the tumor region matrix segmented by radiologists, and
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the slice with the highest dot product was selected. We used
CET1-w and T2-w images successively to train the max slice deep
residual networks and to obtain independent CET1-w and T2-w
prediction models. We also used combined CET1-w and T2-w
images to train the max slice ensemble deep residual networks and
obtain a combined prediction model. We compared the perfor-
mances of the CET1-w, T2-w, and combined models. Finally, the
max slice deep-learning signature was built based on the optimal
model. We also created multiple-slice deep residual networks
based on three slices (the max slices of the tumor area and the two
contiguous slices) using a similar approach. For the max slice net-
works and the multiple slices networks, the inputs were
512 × 512 × 1 and 512 × 512 × 3, respectively, and all the input
images were resized to the same size. The output of the network
was the predicted probability value of the DMFS, and the optimal

threshold was determined using the training set by the
Delong test.

The root mean square prop optimizer was used in the training
process, which could optimize the parameters of the deep-learning
network.30 The range of the batch size was [1, 2, 4, 8, 16], the range
of the learning rate was [0.1, 0.01, 0.001, 10e-4, 10e-5], and the
corresponding range of the learning rate decay was [0.01, 0.001,
10e-4, 10e-5, 10e-6]. The optimal hyperparameter combinations
and model weights were selected based on the results of the internal
validation set. The deep-learning model was constructed in Python
with Keras (v. 2.1.3), based on TensorFlow (v. 1.4.1).

Then a DMFS predictive model, called the MRI-based com-
bined model, was built by integrating the deep-learning signature
and clinical variables that had prognostic significance for DMFS
with coefficients weighted by logistic regression analysis of the

FIGURE 1: Example of ROI segmentation. (a) The ROI of a patient with noninvaded skull-base bone segmented in T2-weighted (T2-w)
and contrast-enhanced T1-weighted (CET1-w) images. (b,c) The ROI of patients with invaded the skull-base bone segmented in T2-w
and CET1-w, and referenced precontrast T1-w images (T1-w).
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training cohort. The MRI-based combined model workflow is pres-
ented in Fig. 2. Based on the MRI-based combined model for
DMFS, the median of the predictive risk scores was defined as the
optimal cutoff to classify patients into low- and high-risk groups.
We built the models on the training cohort, optimized the perfor-
mance of the models on the internal validation cohort, and tested
the stability of the models on the external testing cohort.

Radiomic Signature and Clinical Model Building
Design
We built a radiomic signature based on radiomic feature extraction
and selection. We performed standardized feature extraction on the
same max slice of the tumor used in the deep-learning model from
both the axial T2-w and CET1-w images using the PyRadiomics
platform.31 Then univariate and multivariate analyses were per-
formed for feature selection; the multivariate analysis included the
minimum redundancy-maximum relevance (mRMR), the least abso-
lute shrinkage and selection operator (LASSO), and the Akaike
information criterion (AIC) algorithms.32–34 Similarly, we also built
a multiple slices radiomic signature based on the same three slices as
was used for the deep-learning signature—namely, the max slices of
the tumor area and the contiguous slices. We used the remaining
optimal features to construct radiomic signatures by logistic regres-
sion analysis. Furthermore, to explore the repeatability of feature
selection, we sequentially performed univariate analysis, LASSO, and
AIC algorithms to select features. A clinical model was also built

based on the clinical variables that had prognostic significance for
DMFS by logistic regression analysis. The median of the predictive
risk scores was also defined as the optimal cutoff to classify patients
into low- and high-risk groups in both the radiomic signatures and
clinical model for DMFS.

Statistical Analysis
The distribution of clinical variables between the training, internal
validation, and external testing cohorts was compared using the anal-
ysis of variance (ANOVA) (or independent-samples t-test, when
appropriate) for continuous variables and the Kruskal–Wallis H test
(or χ2 test, when appropriate) for categorical variables. We per-
formed univariate analysis using the independent-samples t-test
(or the Mann–Whitney U-test, when appropriate) and χ2 tests
(or Fisher’s exact test, when appropriate) to identify clinical variables
with prognostic significance for DMFS for developing the clinical
model and for inclusion in the MRI-based combined model. Mann–
Whitney U-tests and χ2 tests were also used for feature selection
prior to the radiomics model generation. All tests were two-sided,
and a value of P < 0.05 was considered statistically significant. The
intra- and interobserver reproducibility of features from different
tumor ROIs (radiologists F.J. and W.F.) were assessed by the
intraclass correlation coefficient (ICC) with an ICC > 0.75 being
regarded as good. Kaplan–Meier survival curves and the log-rank test
were used to compare the DMFS between the low- and high-risk
groups in different models and treatment protocols. We also

FIGURE 2: Flow of the MRI-based combined model. (a) MR image acquisition and segmentation. (b) Imaging preprocessing: Slice
selection, Remove background/Normalization, Histogram equalization. (c) Residual network and MRI-based combined model
construction.
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performed subgroup survival analysis between patients treated with
CCRT alone and additional chemotherapy plus CCRT in different
risk groups. Survival analysis and Kaplan–Meier survival curves were
processed in R using the “survival” and “survcomp” packages. All
statistical analyses were performed using R (v. 3.2.1, Vienna, Aus-
tria), Python (v. 3.6.5, https://www.python.org/), and the Statistical
Package for Social Sciences (SPSS) software (v. 23.0, IBM,
Armonk, NY).

Results
The baseline clinical characteristics of the training, internal
validation, and external testing cohorts are presented in
Table 2 and show statistically significant differences in N
stage, EBV-DNA, and treatment regimen (all P < 0.05). The
mean DMFS was 43.07, 41.68, and 50.98 months in train-
ing, internal validation, and external testing cohorts, respec-
tively. The mean overall survival (OS) was 59.8, 61.84, and
70.38 months in the training, internal validation, and exter-
nal testing cohorts, respectively.

Validation of the Deep-Learning Model
After the quality assessment of the MR images, 86.67% of
the images satisfied SSIM ≥0.9 in CET1-w imaging, and
88.87% of the images satisfied SSIM ≥0.9 in T2-w imaging.
This indicated a good consistency in image quality between
the two hospitals. The intra−/interobserver reproducibility of
the features extracted from different tumor ROIs resulted in
an ICC ≥0.75, which indicates good agreement of the image
segmentation.

By using an end-to-end deep-learning approach, we
determined the predictive information from the T2-w and
CET1-w imaging series. The AUC of the deep learning and
radiomic signatures based on the max tumor slice and multi-
ple slices are presented in Table 3. We found that the max
tumor slice from CET1-w imaging had greater predictive
value than the equivalent slice from T2-w imaging alone or
CET1-w and T2-w imaging combined. Furthermore, the
models based on the max tumor slice demonstrated better
performance than the models based on multiple slices (the
max slice and two contiguous slices). Accordingly, a deep-
learning signature was constructed based on the CET1-w
images. This yielded an AUC of 0.769 (95% confidence
interval [CI]: 0.694–0.843) in the training cohort, 0.705
(95% CI: 0.456–0.954) in the internal validation cohort, and
0.783 (95% CI: 0.604–0.962) in the external testing cohort.
After univariate analysis for the significant clinical variables,
only N stage, EBV-DNA, and treatment regimen were signif-
icantly associated with DMFS in LANPC patients (all
P < 0.05). Thus, the MRI-based combined model was built
by integrating the deep-learning signature with these three
clinically significant variables. The deep-learning model gen-
erated an accurate prediction of DMFS in LANPC patients,
yielding an AUC of 0.796 (95% CI: 0.729–0.863) in the

training cohort, 0.795 (95% CI: 0.540–1.000) in the internal
validation cohort, and 0.808 (95% CI: 0.654–0.962) in the
external testing cohort.

Examination of the Radiomic Signature and Clinical
Model
We extracted features from T2-w and CET1-w images based
on the max tumor slice and multiple slices. After feature
selection, the radiomic signature based on multiple slices was
found to perform better than that based on the max slice
alone (Table 3). Five image features were retained:
T1_original_shape_Maximum 3D Diameter, T1_wavelet.
LLL_firstorder_Minimum, T1_squareroot_firstorder_90 Per-
centile, T1_wavelet.HHH_GLSZM_Large Area High Gray
Level Emphasis, and T1_wavelet.HHL_GLCM_Imc2. The
radiomic signature yielded an AUC of 0.789 (95% CI:
0.714–0.864) in the training cohort, 0.761 (95% CI:
0.537–0.986) in the internal validation cohort, and 0.765
(95% CI: 0.569–0.961) in the external testing cohort.
Besides, the features apart from those selected by the two dif-
ferent algorithm combinations were different. The details are
presented in Table S1 in the Supplemental Material.

We also built a clinical model based on the clinical vari-
ables. After univariate analysis for the significant clinical vari-
ables, only the N stage, EBV-DNA, and treatment regimen
were used to build the clinical model. The clinical model
yielded an AUC of 0.698 (95% CI: 0.614–0.781) in the
training cohort, 0.727 (95% CI: 0.474–0.981) in the internal
validation cohort, and 0.649 (95% CI: 0.453–0.845) in the
external testing cohort. Thus, the MRI-based combined
model had better predictive performance than the deep-
learning signature, radiomic signature, and clinical model.
The receiver operating characteristic curves are presented
in Fig. 3.

Survival Analysis for Different Treatment Regimens
Based on the Models
According to the MRI-based combined model, deep-learning
signature, radiomic signature, and clinical model the DMFS
of the high-risk group patients was significantly shorter than
that of the low-risk group patients (P < 0.05; Fig. 4a–d).
There was a significant difference between patients treated
with CCRT alone and patients treated with additional che-
motherapy plus CCRT in the low-risk group (P < 0.05;
Fig. 4e). The DMFS of patients treated with CCRT alone
was longer than that of patients treated with additional
chemotherapy plus CCRT in the low-risk group. However,
there was no significant difference between patients treated
with CCRT alone and patients treated with additional che-
motherapy plus CCRT in the high-risk group (P = 0.62;
Fig. 4f).
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Discussion
In this study, we built an MRI-based combined model inte-
grating a deep-learning signature and clinical variables—

namely, the N stage, EBV-DNA, and treatment regimen—
which could predict DMFS in LANPC patients. Compared
with clinical-based and deep-learning signature-based, and

TABLE 2. Baseline Characteristics of Patients With LANPC for the Training, Internal Validation, and External Testing
Cohorts

Training cohort
(n = 169)

Internal validation
cohort (n = 19)

External testing
cohort (n = 45) P value

Age (mean, years) 41.94 (18–71) 44.16 (27–68) 43.16 (20–64) 0.486

Sex 0.459

Men 125 (73.96%) 16 (84.21%) 36 (80.00%)

Women 44 (26.04%) 3 (%15.79) 9 (20.00%)

T stage 0.178

T1 6 (3.55%) 0 6 (13.33%)

T2 30 (17.75%) 3 (15.79%) 9 (20.00%)

T3 88 (52.07%) 12 (63.16%) 22 (48.89%)

T4 45 (26.63%) 4 (21.05%) 8 (17.78%)

N stage 0.020

N0 8 (4.73%) 4 (21.05%) 1 (2.22%)

N1 46 (27.22%) 3 (15.79%) 7 (15.56%)

N2 84 (49.70%) 10 (52.63%) 33 (73.33%)

N3 31 (18.34%) 2 (10.53%) 4 (8.89%)

Staging 0.223

III 99 (58.58%) 14 (73.68%) 33 (73.33%)

IVa 41 (24.26%) 4 (21.05%) 8 (17.78%)

IVb 29 (17.16%) 1 (5.26%) 4 (8.89%)

Histology 0.880

Differentiated keratinizing 0 0 0

Differentiated non-keratinizing 8 (4.73%) 1 (5.26%) 3 (6.67%)

Undifferentiated non-keratinizing 161 (95.27%) 18 (94.74%) 42 (93.33%)

EBV DNA (copies/mL) <0.001

<4000 98 (57.99%) 11 (57.89%) 40 (88.89%)

≥4000 71 (42.01%) 8 (42.11%) 5 (11.11%)

Chemotherapeutic regimens 0.005

CCRT 54 (31.95%) 8 (42.11%) 5 (11.11%)

IC+CCRT 100 (59.17%) 8 (42.11%) 38 (84.44%)

CCRT+AC 15 (8.88%) 3 (15.78%) 2 (4.44%)

EBV-DNA = plasma Epstein–Barr virus DNA; CCRT = concurrent chemoradiotherapy; IC = induction chemotherapy; AC = adjuvant
chemotherapy.
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radiomic signature-based models, this combined model had a
better predictive performance. Furthermore, the deep-learning
signature based on the largest tumor slice and radiomic signa-
ture based on multiple slices in CET1-w images had the best
performance among signature models. Additional subgroup
analysis showed that, based on the MRI-based deep-learning
model, the DMFS of low-risk patients treated with CCRT
alone was longer than it was for patients treated with addi-
tional chemotherapy plus CCRT.

Our deep-learning model was predominantly based on
MR image processing because MRI is a standard examination
technique for primary tumors and offers outstanding image
resolution. Compared with hand-crafted radiomics methods,
the deep-learning model was easy to operate because it only
required inputting the MR images to end-to-end output a
predictive value. Additionally, the MRI-based model used a
range of features from visual characteristics to abstract map-
pings that are associated with DMFS. In our study, there was

TABLE 3. AUC of the Deep Learning and the Radiomic Signatures Based on Max Slice and Multiple Slices

Methods Slices Image series Training cohort
Internal validation

cohort
External testing

cohort

Deep
learning

Max slice CET1-w 0.769 (0.694–0.843) 0.705 (0.456–0.954) 0.783 (0.604–0.962)

T2-w 0.553 (0.461–0.645) 0.636 (0.326–0.947) 0.573 (0.369–0.777)

CET1-w +
T2-w

0.763 (0.691–0.836) 0.773 (0.523–1.000) 0.732 (0.573–0.892)

Multiple
slices

CET1-w 0.595 (0.504–0.685) 0.364 (0.090–0.637) 0.788 (0.640–0.936)

T2-w 0.617 (0.528–0.707) 0.557 (0.249–0.864) 0.609 (0.423–0.794)

CET1-w
+ T2-w

0.616 (0.527–0.704) 0.578 (0.271–0.888) 0.677 (0.493–0.860)

Radiomic Max slice CET1-w 0.674 (0.589–0.758) 0.511 (0.208–0.769) 0.730 (0.580–0.880)

T2-w 0.663 (0.574–0.753) 0.608 (0.321–0.895) 0.643 (0.461–0.824)

CET1-w +
T2-w

0.681 (0.594–0.767) 0.585 (0.284–0.886) 0.696 (0.538–0.853)

Multiple
slices

CET1-w 0.789 (0.714–0.864) 0.761 (0.537–0.986) 0.765 (0.569–0.961)

T2-w 0.784 (0.709–0.859) 0.761 (0.537–0.986) 0.639 (0.447–0.831)

CET1-w +
T2-w

0.801 (0.729–0.872) 0.739 (0.486–0.992) 0.684 (0.487–0.882)

T2-w = T2-weighted imaging; CET1-w = contrast-enhanced T1-weighted imaging.

FIGURE 3: ROC curves for a newly constructed deep-learning model, deep-learning signature, radiomic signature, and clinical model
for the (a) training, (b) internal validation, and (c) external testing cohorts of LANPC patients.
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no significant difference between deep learning and radiomic
signatures when they were used independently. After integrat-
ing clinical variables, however, the MRI-based combined
model could predict DMFS more accurately than the radio-
mic signature model among the training, validation, and test-
ing cohorts. Wang et al21 also suggested that a deep-learning
model has better performance than conventional radiomic
and clinical models. Indeed, the MRI-based combined model
could not only automatically extract relevant features to eval-
uate the DMFS but could also classify LANPC patients into
high and low DMFS risk groups using its deep-learning
algorithm.

The radiomic signature constructed based on multiple
slices exhibited better performance than a radiomic signature
based on the largest tumor slice alone. This result may arise
from the fact that radiomics is well suited to solving small-
sample problems and a radiomic signature based on multiple
slices may have more extracted image features available for
calculation. However, while deep learning makes better and
more complicated decisions that generally involve massive
data when the sample is not sufficiently large, multiple slices
could lead to overfitting or increased noise. Our results
showed that the performance of the deep-learning signature

based on the largest tumor slice is better than that based on
multiple slices. Ge et al35 reported that using a single 2D slice
image to build a deep-learning model could mitigate over-
fitting. Furthermore, Han et al36 showed that a 2D slice
could provide sufficient contextual information for the model
to reliably separate locally similar voxels and produce very
accurate results. Interestingly, both the deep learning and
radiomic signatures based on CET1-w images performed bet-
ter than those based on T2-w images or combined CET1-w
and T2-w images. This may be because T2-w images mainly
provide anatomical information, whereas CET1-w images
evaluate blood supply, which is a key determinant for esta-
blishing and determining prognosis. Jiang et al37 also
suggested that using CET1-w images to build the model pro-
duces better results than T2-w images.

The efficacy of adding IC or AC to the CCRT regimen
in the treatment of LANPC patients is still controversial.
Interestingly, our study showed that low-risk patients who
received IC or AC plus CCRT had a lower DMFS rate than
patients who received CCRT alone, which was inconsistent
with the results of previous studies that suggested IC plus
CCRT could improve the DMFS rate11 or long-term
locoregional control.38 It is worth noting that Grade 3 to

FIGURE 4: Kaplan–Meier curves for DMFS in LANPC patients. The patients were classified into a high DM risk group and a low DM
risk group by the (a) deep learning model, (b) deep learning signature, (c) radiomic signature, and (d) clinical model. The DMFS rate
of high-risk patients is significantly lower than that of low-risk patients (P < 0.001). Kaplan–Meier curves comparing the DMFS
between patients treated with additional chemotherapy plus concurrent chemoradiotherapy (IC/AC+CCRT) to those treated with
concurrent chemoradiotherapy alone (CCRT) and CCRT alone in low-risk group (e) and (f) high-risk group.
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4 toxicities of additional chemotherapy plus CCRT were pre-
viously reported in LANPC patients.10,39 We speculated that
additional chemotherapy increasing acute hematological toxic-
ities and reducing patient tolerance to CCRT might contrib-
ute to poor treatment efficacy. In addition, the retrospective
nature of the study could cause patient distributional unbal-
ance of the chemotherapeutic regimens, which might affect
our results; further, prospective studies are needed to validate
the outcomes.

Pretreatment plasma EBV-DNA and N stage were
reported as important risk factors for NPC patients and have
implications for DMFS.13 Our previous study suggested that
N stage is a component of an MRI-based radiomic model for
DM prediction. In the present study, N stage and plasma
EBV-DNA were also strongly associated with DM. By inte-
grating the N stage, EBV-DNA, and deep-learning signature,
our MRI-based combined model had better predictive effi-
cacy than clinical-based models for the training, validation,
and testing cohorts.

Limitations
First, the retrospective nature of the study substantially limits
the value of the deep-learning model and the collected infor-
mation. The distribution of the N stage, plasma EBV-DNA,
and treatment regime had a significant difference between the
training/validation and testing cohorts. However, despite the
difference in data distribution, the performance of the models
was good, and indicated good model generalization. In order
to generalize our results to other populations, further external
and prospective validation in other endemic and nonendemic
areas is still required. Second, we compared the LASSO algo-
rithm with univariate and multivariate analyses that were per-
formed sequentially during feature selection. The repeatability
of radiomic signatures was poor in this study, and the
remaining features did not overlap. Third, because the differ-
ent scan protocols between hospitals had significant impacts
on image quality, the generalizability of the models is indi-
rectly decreased. In our study, after image collection, we per-
formed an image quality assessment to filter out
unsatisfactory images.

Conclusion
Our MRI-based combined model incorporating a deep-
learning signature and clinical features, including the N stage,
plasma EBV-DNA, and treatment regimen, could be used to
evaluate the risk of DMFS in LANPC patients and could
provide a complementary tool for making treatment
decisions.
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