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Preoperative computed tomography-guided disease-free survival prediction in gastric 

cancer: a multicenter radiomics study 

Abstract 

Purpose: Preoperative and noninvasive prognosis evaluation remains challenging for gastric 

cancer. Novel preoperative prognostic biomarkers should be investigated. This study aimed to 

develop multidetector-row computed tomography (MDCT)-guided prognostic models to direct 

follow-up strategy and improve prognosis. 

Methods: A retrospective dataset of 353 gastric cancer patients were enrolled from two centers 

and allocated to three cohorts: training cohort (n = 166), internal validation cohort (n = 83), and 

external validation cohort (n = 104). Quantitative radiomic features were extracted from MDCT 

images. The least absolute shrinkage and selection operator penalized Cox regression was 

adopted to construct a radiomic signature. A radiomic nomogram was established by integrating 

the radiomic signature and significant clinical risk factors. We also built a preoperative 

tumor-node-metastasis staging model for comparison. All models were evaluated considering 

abilities of risk stratification, discrimination, calibration, and clinical use. 

Results: In the two validation cohorts, the established four-feature radiomic signature showed 

robust risk stratification power (P = 0.0260 and 0.0003, log-rank test). The radiomic nomogram 

incorporated radiomic signature, extramural vessel invasion, clinical T stage, and clinical N stage, 

outperforming all the other models (concordance index = 0.720 and 0.727) with good calibration 

and decision benefits. Also, the 2-year disease-free survival (DFS) prediction was most effective 

(time-dependent area under curve = 0.771 and 0.765). Moreover, subgroup analysis indicated 

that the radiomic signature was more sensitive in stratifying patients with advanced clinical T/N 

stage. 

Conclusions: The proposed MDCT-guided radiomic signature was verified as a prognostic 

factor for gastric cancer. The radiomic nomogram was a noninvasive auxiliary model for 

preoperative individualized DFS prediction, holding potential in promoting treatment strategy 
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and clinical prognosis. 

Keywords: disease-free survival, risk stratification, radiomics, gastric cancer, multidetector-row 

computed tomography 
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Introduction 

Gastric cancer answers for a worldwide estimated 783,000 deaths in 2018, ranking third among 

leading causes of cancer death
1
. The primary treatment strategies of gastric cancer include 

endoscopic submucosal dissection, radical surgery, neoadjuvant therapy, and chemotherapy et al. 

In times of treatment decision making, clinicians and patients desperately need evidence-based 

information about risk of recurrence and death, which is mainly based on preoperative clinical 

tumor-node-metastasis (TNM) system. Nowadays, multidetector-row computed tomography 

(MDCT) is widely applied in clinical staging owing to its noninvasiveness, convenience, and 

stability
2
 and clinical staging defined on preoperative MDCT has been proven a prognostic 

indicator of survival
3,4

. Furthermore, some other characteristics on MDCT, for instance, 

extramural vessel invasion, have also been proven closely related to the prognosis of gastric 

cancer
5,6

. However, subjective and qualitative, conventional interpretation of MDCT mainly 

depends on clinical experience and individual perspective of radiologists. Therefore, novel 

means should be investigated to accelerate individualized prognostic progress and improve 

outcomes for gastric cancer patients. 

Recent advances of molecular markers are growing important for prognostic analysis in 

gastric cancer. Several studies
7,8

 suggested that patients with hypermethylated MDGA2 or 

exhibiting imbalanced ADAR1/2 demonstrated extremely poor prognosis. Nevertheless, limited 

by high cost and complex protocols, most molecular markers are not yet available for application 

in clinical medicine. 

Particularly, potential of radiomics has been revealed in recent years’ studies
9-11

. The main 

concept lies in quantitatively mining high-throughput medical image traits and capturing tumor 

heterogeneity via computer-based analysis to improve diagnosis and prognosis
12,13

. In previous 

researches, Giganti
14

 and Yoon
15

 et al. evaluated the associations between CT texture features 

and survival outcomes. However, their studies merely used a few texture features, which might 

underestimate the significance of radiomics in quantifying tumor morphology and intensity on 
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CT images. Taking a step forward, Li
16

 and Jiang
17,18

 et al. established CT-based radiomic 

nomograms combining radiomic signatures and clinical factors to predict prognosis for gastric 

cancer and showed good performance, higher than models with clinical factors alone. However, 

the major clinical factors in above models, such as T/N stage, were determined by postoperative 

histopathological analysis of surgical specimens. Thus, the contribution of their models to 

preoperative treatment decision making is limited greatly. 

Under such circumstances, this study aimed to create an MDCT-guided radiomic signature 

for preoperative disease-free survival (DFS) prediction in gastric cancer and verify its 

incremental contribution to preoperative radiomic nomogram. 

Materials and Methods 

Enrolled population 

This multicenter retrospective study was ethically granted by the Institutional Review Board of 

Peking University People’s Hospital (center 1) and Guangdong Provincial People’s Hospital 

(center 2) in compliance with the Health Insurance Portability and Accountability. Informed 

consent was not required. In center 1, 249 pathologically confirmed gastric cancer patients (182 

men and 67 women) were collected. In center 2, 104 patients (72 men and 32 women) were 

collected. Supplemental Text S1 and Figure S1 provided detailed inclusion and exclusion criteria 

along with a final diagram for patient recruitment. 

Follow-up information included laboratory testing and chest/abdominal/pelvic MDCT at 3, 6, 

12 months within the first year, each subsequent annual postoperatively. The progressive event 

was defined as local recurrent, metachronous metastatic disease, or recorded death caused by 

gastric cancer. DFS time was recorded in months from the radical surgery date to progressive 

date or the last follow-up date patients were known free of disease. Available clinical risk factors 

included age, sex, carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), 

location/growth pattern, clinical T stage (ctT), clinical N stage (ctN), and extramural vessel 

invasion (ctEMVI) defined on MDCT (Table 1). Definitions for ctT, ctN, and ctEMVI according 
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to Supplemental Text S2 were assessed and confirmed by three radiologists upon consistent 

consultation. 

Patients in center 1 were randomly allocated to two cohorts at a 2:1 ratio (training cohort, 

n=166; internal validation cohort, n=83). Patients in center 2 were used as external validation 

cohort. The sample size power analysis and randomization method were given in Supplemental 

Text S3. 

MDCT-guided feature extraction 

The contrast-enhanced portal venous phase MDCT images were used in this study. Detailed 

procedure for image acquisition is given in Supplemental Text S4. The CT scanning parameters 

for the two centers are provided in Supplemental Table S1. 

The tumor regions of interest (ROIs) were created by manually delineating along the tumor 

margin on the slice with the largest tumor area using ITK-SNAP (version 3.4.0, 

http://www.itksnap.org). Two-dimensional radiomic features were extracted for all the patients 

based on algorithms provided in Pyradiomics (version 2.1.1) and implemented by Python 3.6 

(https://www.python.org). Final radiomic features were composed of eight groups according to 

the image biomarker standardization initiative (IBSI). Specific feature types are summarized in 

Supplemental Figure S2. Image quality control and feature consistency test are described in 

Supplemental Text S5. 

Numerical radiomic features were standardized by z-score method using the mean and 

standard deviation parameters calculated from the training cohort. Key feature selection was 

conducted in the training cohort using a Cox proportional hazards regression method with the 

least absolute shrinkage and selection operator (LASSO) penalty in 10-fold cross-validation. 

Individualized radiomic signature construction and validation 

The overall radiomics workflow is depicted in Figure 1. Radiomic signature construction was 

conducted within the training cohort. Cox proportional hazards regression was used for 

modelling the radiomic signature by examining the joint effects of selected radiomic features on 

http://www.itksnap.org/
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the risk of disease progression at a particular survival time
19

. Reserved key radiomic features 

were simultaneously fed into a multivariate Cox regression to compute the regression 

coefficients. Then, radiomic features weighted by corresponding regression coefficients posed a 

linear formula to calculate an individualized risk score per patient, which was called a radiomic 

signature. 

Potential contribution of radiomic signature to DFS was verified in the two validation 

cohorts. Using median radiomic signature value calculated in the training cohort as a cutoff value, 

patients were separated into high-risk (≥ median) and low-risk (< median) groups in each 

cohort. Kaplan-Meier survival curves, along with log-rank tests were conducted to investigate 

significant differences in risk stratification. To evaluate discrimination, concordance index 

(C-index) was computed. Also, the time-dependent receiver operating characteristic (ROC) curve 

analysis
20

 was conducted to investigate how well the radiomic signature could predict the DFS at 

the time point of 1, 2, and 3 years. To quantify the goodness-of-fit between actual and predicted 

survival probabilities, calibration curves along with Hosmer-Lemeshow tests were measured. In 

usefulness of clinical trials, decision curve analysis (DCA) was conducted in internal validation 

cohort by calculating the net benefits at some threshold probabilities. 

Subgroup analysis of radiomic signature according to clinical T and N stage 

One remarkable trial was that we moved on to see whether radiomic signature could still well 

risk stratify patients with certain clinical stage. Patients from center 1 and center 2 were both 

divided into seven subgroups according to clinical T and N stage. The risk stratification 

performance was investigated using Kaplan-Meier survival curves along with log-rank tests in 

these subgroups, including ctT1 group, ctT2 group, ctT3 group, ctT4 group, ctN- group, ctN+ 

group, and neoadjuvant therapy group. Herein, recommended by National Comprehensive 

Cancer Network guidelines to receive neoadjuvant therapy
21

, patients with ctT2 or higher ctT and 

any ctN constituted the neoadjuvant therapy group. 

Radiomic nomogram development and performance evaluation 
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Clinical risk factors in Table 1 were taken into consideration to build a more powerful radiomic 

nomogram. Significant risk factors were screened out by both univariate and multivariate Cox 

regressions in the training cohort. Then the radiomic signature and selected clinical risk factors 

were fed into a Cox regression, giving the final potential prognostic radiomic nomogram. The 

outputs of the radiomic nomogram were the probabilities of DFS. 

Further, a preoperative TNM staging model was established based on the training cohort 

using the multivariate Cox proportional hazards regression with the ctT and ctN as the covariates 

of estimating risk of disease progression at a particular survival time. Apart from C-index, area 

under the ROC curve (AUC), and DCA, comparison of the three prognostic models (radiomic 

signature, radiomic nomogram, TNM staging model) was quantified by integrated discrimination 

improvement (IDI)
22

 (details in Supplemental Text S6). Thereinto, IDI is an effective method in 

quantifying the incremental improvements by adding some new predictors to the existing 

predictors. 

Statistical analysis 

To verify the balance between training and internal validation cohort, Mann-Whitney U tests 

were used for continuous clinical risk factors, Chi-squared tests were applied for categorical 

variables, and log-rank tests were conducted for DFS. A two-sided P<0.05 was deemed an 

attained statistical significance level. All tests were based on R packages (Supplemental Text S7) 

in R software (version 3.4.3; https://www.r-project.org/). 

Results 

Patient characteristics and radiomic feature discovery 

Baseline characteristics of clinical risk factors for training, internal validation, and external 

validation cohorts are summarized in Table 1. Patients in the training and internal validation 

cohorts were balanced for survival with the median DFS of 25.5 months (observed: 58/166, 

34.9%) and 22.0 months (observed: 33/83, 39.8%), respectively (P = 0.4290, log-rank test). No 

significant difference was captured between these two cohorts in clinical risk factors (P = 

https://www.r-project.org/
link:continuous
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0.0656-0.9104). After univariate and multivariate Cox regression, only ctEMVI was identified as 

a significant prognostic factor (Table 2). 

A total of 924 radiomic features were initially extracted per image, among which 

approximately 50% features were included in the subsequent experiments after data cleaning 

consistency test. LASSO Cox method identified four potential radiomic features (Supplemental 

Figure S3). Stratification ability and prognosis performance of each selected radiomic feature 

were revealed univariately in Supplemental Figure S4 and Table S2. 

Radiomic signature construction and validation 

With the regression coefficients of four selected radiomic features, formula for radiomic 

signature is defined in Supplemental Text S8. The radiomic signature alone was a risk factor for 

DFS in the training cohort (Table 2), and this was confirmed in both validation cohorts with the 

hazard ratio (HR) of 1.825 (95% confidence interval [CI]: 1.107-3.009) and 1.694 (95%CI: 

1.220-2.352). 

By the cutoff value 0.109 in the training cohort, patients in internal validation cohort were 

separated into high-risk group (range, 0.155-1.827) and low‐ risk group (range, -23.865-0.096). 

Radiomic signature of high-risk patients in external validation cohort were from 0.182 to 2.586, 

whereas low-risk values were from -20.374 to 0.039. The risk stratification ability of the 

radiomic signature was verified in both validation cohorts (P = 0.0260 and 0.0003, Figure 2). 

Normalized mean values of the four respective radiomic features for high-risk and low-risk 

patients are illustrated in a radar map (Supplemental Figure S5). The radiomic signature showed 

a fine distinguishing ability by a C-index of 0.695 (95%CI: 0.626-0.763) in the training cohort, 

0.646 (95%CI: 0.560-0.731) in internal validation cohort, and 0.693 (95%CI: 0.617-0.770) in 

external validation cohort (Table 3). 

Risk stratification ability of radiomic signature in subgroup analysis 

The Kaplan-Meier survival curves with the previous cutoff value (0.109) are conducted within 

seven subgroups. In center 1, patients in ctT4, ctN+, and neoadjuvant therapy subgroups could be 
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significantly separated into high-risk and low-risk of DFS (P = 0.0019, 0.0058, 0.0008, Figure 3), 

while for ctT1, ctT2, ctT3, and ctN- patients, the radiomic signature may fail to well risk stratify 

them (Supplemental Figure S6) due to the nature of early clinical stage. In center 2, radiomic 

signature was again verified to work well with patients in ctT3, ctT4, ctN+, and neoadjuvant 

therapy subgroups (P = 0.0162, 0.0215, 0.0038, 0.0005, respectively). 

Individualized Radiomic Nomogram 

After univariate and multivariate Cox regression, ctEMVI and radiomic signature were identified 

as two significant prognostic factors. Considering the significance in univariate analysis and the 

great power in clinical prognosis prediction, we incorporated ctT and ctN in the radiomic 

nomogram. Thus, the radiomic nomogram combining the radiomic signature, ctEMVI, ctT, and 

ctN is presented in Figure 4a. Formula for radiomic nomogram is shown in Supplemental Text 

S8. 

Calibration curves (Figure 4b) suggested good agreement between model predictions and 

actual outputs at 1, 2, and 3 years (Hosmer-Lemeshow test: P = 0.6849, 0.9177, 0.9571, 

respectively). Decision curves (Figure 4c) indicated that radiomic nomogram added more 

benefits when directing treatment strategies compared with radiomic signature, TNM staging 

model, and simple schemes (follow-up of all or none patients) across a threshold range of 

0.00-0.64. Kaplan-Meier curves for radiomic nomogram are shown in Supplemental Figure S7. 

In internal validation cohort, the predictive ability of radiomic nomogram (C-index [95%CI]: 

0.720 [0.636-0.804]; AUCs of 0.696, 0.771, 0.708 at 1, 2, 3 years) outperformed the TNM 

staging model (C-index [95%CI]: 0.680 [0.548–0.812]; AUCs of 0.644, 0.677, 0.690 at 1, 2, 3 

years). Time-dependent ROC curves are presented in Supplemental Figure S8. A significant 

difference was found in C-index between radiomic nomogram and radiomic signature (P = 

0.0115), whereas there was no difference between radiomic nomogram and TNM staging model 

(P = 0.1981). In this case, however, an IDI of 16.6% (95%CI, 6.7%-34.6%; P<0.0001) did 

identify the promotion of radiomic nomogram compared with clinical prognosis by TNM staging 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved 

(Supplemental Figure S9). In external validation cohort, a C-index of 0.727 (95%CI: 0.662-0.792) 

from radiomic nomogram again surpassed 0.712 (95%CI: 0.614-0.810) from TNM staging 

model. Higher time-dependent AUCs (0.742, 0.765, 0.762 at 1, 2, 3 years) for radiomic 

nomogram were also achieved. 

Discussion 

The implementation of individualized strategies of gastric cancer may be promoted when 

radiomic approaches are adopted in preoperative prognostic models. To the best of our 

knowledge, few pioneering researches only concentrated on preoperative risk model construction 

for DFS in gastric cancer based on radiomics. In this study, we explored an MDCT-guided 

radiomic signature as an effective prognostic factor for preoperative risk stratification and 

verified the assistance of a radiomic nomogram to the prognosis prediction beyond ordinal 

staging system. 

For a start, the significant differences of DFS between high-risk and low-risk groups 

separated by radiomic signature were demonstrated in both internal and external validation 

cohorts, as reported in previous studies on prognosis prediction by radiomics for gastric cancer 

and other cancers
18,23,24

. In order to further validate the risk stratification ability of radiomic 

signature in patients with certain clinical stage, subgroup analysis was performed. And similar 

results were obtained in both centers that significant differences of DFS between high-risk and 

low-risk groups occurred in relatively more advanced clinical stage (ctT3-4, ctN+, and 

neoadjuvant therapy groups), probably relevant to tumor heterogeneity and aggression. It shows 

the potentiality of radiomic signature in providing more evidence-based risk stratification 

instructions when treatment strategies need to be made. A gastric cancer patient with ctT4, for 

instance, advanced clinical stage is an evidence for accepting neoadjuvant therapy that may 

improve prognosis, and now belonging to high-risk group could be an additional proof. 

Prognosis of gastric cancer lies in the interaction with patient-, tumor-, and treatment-related 

elements, however, the preoperative risk model can only be established on the first two. The 
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radiomic nomogram incorporated a radiomic signature revealing intratumor heterogeneity, a 

macroscopic finding on MDCT, and clinical staging information. This combined model reflected 

more comprehensive characteristics of gastric cancer and overcame the latent shortcoming of a 

single-sided model. The radiomic nomogram outperformed the conventional TNM staging model 

manifested by C-index, AUC, and DCA, indicating that radiomic approaches could aid 

preoperative prognosis estimation directly. Thereinto, though the radiomic signature showed 

lower C-index values than the TNM staging model, we conducted further statistical comparison 

and confirmed that there were no significant differences in C-index values between the two 

models in training and internal validation cohorts (student t test; P = 0.1593 and 0.3088). In other 

words, the radiomic signature had a similar distinguishing ability to the TNM staging model, 

echoing our original intention to combine the radiomic signature to improve clinical prognostic 

prediction, rather than replace the TNM staging system. Moreover, as a preoperative model, our 

radiomic nomogram achieved a similar predictive level to previous postoperative risk models of 

gastric cancer (without radiomic method)
25-28

, and compared to the latter, it could serve as an 

effective noninvasive toolkit and provide substantial basis along with great timeliness for 

preoperative risk stratification, which may further benefit gastric cancer patients’ initial 

individualized treatments. 

There were three advantages of the proposed methods. First, we conducted sample size 

power analysis to ensure an appropriate study design (Supplemental Text S3). Though the overall 

sample size was not so big, the case size configurations for the three cohorts were all proper for 

model construction and validation, which was the basis of this radiomics study. As far as we 

know, seldom did previous radiomics studies report the sample size power analysis results. 

Second, we investigated the associations of radiomic features extracted from different MDCT 

image phases and proved that portal venous phase images might be more appropriate and stable 

for radiomic feature extraction in gastric cancer (Supplemental Text S9, Figure S10, Table S3, 

Table S4), which was partially consistent with previous studies
29-31

. Our results also showed that 



A
cc

ep
te

d
 A

rt
ic

le
 

This article is protected by copyright. All rights reserved 

most of the selected features from different MDCT image phases showed close correlations, and 

morphological features may be more stable for different MDCT image phases. Third, clearer 

than previous studies, we specified ICC calculation models, making consistency tests by ICC 

more reasonable. Moreover, comparative experiments using different feature selection methods 

were conducted (Supplemental Text S10, Table S5, Table S6), proving that the presented 

methods were competitive. Also, the proposed methods along with radiomic signature 

performance were equivalent to previous studies (C-index = 0.695-0.700)
17,18

. 

The four MDCT-derived radiomic features were consistent with previous biomarker findings 

for gastric cancer or survival
32-34

. Given the radiomics hypothesis, greater major axis length and 

median intensity values demonstrate larger tumor size, probably in accord with higher disease 

occurrence probability and poorer prognosis. Lower small zone emphasis values and greater 

zone size non-uniformity values are possibly indicative of more intratumor heterogeneity and 

worse survival. The interpretations above are in concordance with radiomic signature formula. 

For another, although not all the radiomic features stratified patients univariately or achieved fine 

single C-index, the multi-feature radiomic signature and the combined radiomic nomogram did 

predict survival outcomes well, similar to the common sense that doctors naturally correlate 

multiple estimations of disease as opposed to focusing on a single factor to determine therapy in 

clinical practice
35

. 

For all cancers, the direct relationship between TNM classification and prognosis is a 

well-established basis for treatment. In univariate analysis, there were significant associations 

between ctT/ctN and DFS, indicating great power of the two factors in prognosis. Therefore, we 

incorporated ctT and ctN in the radiomic nomogram. However, ctT and ctN were not 

significantly associated with DFS in multivariate analysis. This could be induced by inaccurate 

preoperative clinical staging. The accuracies of T/N stage defined on MDCT were just 62-75% 

and 75-80% with postoperative pathological staging as the gold standard
2,36,37

. Another reason 

may be the small sample size of this retrospective study, thus failing to detect important clinical 
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findings sufficiently
38

. However, considering the clinical significance of ctT and ctN, the two 

factors also participated in the radiomic nomogram construction, the results of which showed 

better predictive ability, surpassing the radiomic signature and conventional TNM staging model. 

As for EMVI, the presence of malignant cells within blood vessels beyond the muscularis 

propria, was confirmed closely related to poor outcomes of patients with gastrointestinal 

tumors
6,39,40

 and used to develop magnetic resonance imaging (MRI)-based risk stratification 

models
41,42

. However, MRI has great limitation in diagnosing EMVI accurately due to motion 

artifacts
43

. In this study, ctEMVI was identified as an significant predictor, which agreed with 

several studies
5,6,44

 that had discovered ctEMVI as an independent risk factor for the prognosis of 

gastric cancer. 

This study also has some limitations. First, the sample size for this multicenter retrospective 

study was still not enough and a relatively short follow-up period may result in bias. Second, 

tumor delineation was not automatically performed, making it a time-consuming and 

labor-intensive task. Third, the differences of DFS between the two centers may account for the 

time-dependent AUCs in external validation cohort being slightly higher than those in the 

training cohort, which may be caused by different follow-up strategies in different centers. 

Finally, accurate pathological diagnosis of EMVI is based on pathological large section 

technique which can show the tumors and surrounding tissues in an overall and comprehensive 

way. But pathological large section examination for gastric cancer is not routinely used in 

clinical work in most hospitals, including the centers in our research, therefore, ctEMVI cannot 

be confirmed by pathology universally. However, we believe our study showed the potential of 

using radiomics in daily practice and offering help in individualized strategies. 

Conclusions 

The radiomic signature established in this study was a validated independent prognostic factor in 

gastric cancer. The radiomic nomogram improved the predictive performance of preoperative 

staging model, probably providing a new train of thought beyond clinical prognosis and risk 
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stratification in individualized treatment strategies for gastric cancer. 
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Figure Legends 

Figure 1. The overall radiomics workflow. (a) Examples of manual tumor delineation on 

multidetector-row computed tomography. (b) Feature discovery, including radiomic feature 

selection and clinical characteristic analysis. (c) Radiomic signature and radiomic nomogram 

construction. (d) Model performance evaluation. ICC, intraclass correlation coefficient; LASSO, 

least absolute shrinkage selection operator; KM, Kaplan-Meier; AUC, area under the curve; 

DCA, decision analysis curve; IDI, integrated discrimination improvement. 

Figure 2. Kaplan-Meier survival curves indicated the radiomic signature could risk stratify 

gastric cancer patients in the (a) training cohort, (b) internal validation cohort, and (c) external 

validation cohort. 

Figure 3. Subgroup analysis showed that radiomic signature had good risk-stratification ability 
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for patients with more advanced clinical stage. Center 1: (a) ctT4 subgroup, (b) ctN+ subgroup, 

(c) neoadjuvant therapy subgroup. Center 2: (d) ctT4 subgroup, (e) ctN+ subgroup, (f) 

neoadjuvant therapy subgroup. ctT, clinical T stage defined on multidetector-row computed 

tomography; ctN, clinical N stage defined on multidetector-row computed tomography. 

Figure 4. (a) A radiomic nomogram combined ctT, ctN, ctEMVI, and radiomic signature. (b) 

Calibration curves. (c) Decision curve analysis for radiomic nomogram (red line), follow-up of 

all (blue line), follow-up of none (black line), radiomic signature (orange line), and TNM staging 

model (green line) in internal validation cohort. ctT, clinical T stage defined on MDCT; ctN, 

clinical N stage defined on MDCT; ctEMVI, extramural vessel invasion defined on MDCT; 

MDCT, multidetector-row computed tomography; DFS, disease-free survival; TNM, 

tumor-node-metastasis. 
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Table 1. Baseline characteristics of clinical risk factors for enrolled gastric cancer patients. 

Clinical risk factors 

Training   

cohort   

(n=166) 

Internal 

validation cohort 

(n=83) 

P 

External 

validation cohort 

(n=104) 

Age, mean ± SD, years 64.1±12.3 61.3±12.9 0.1061 57.5±11.2 

Sex, No. (%)   0.8398  

male 122 (73.5) 60 (72.3)  72 (69.2) 

female 44 (26.5) 23 (27.7)  32 (30.8) 

CEA, median (IQR) 2.00 (1.17-3.39) 1.57 (0.92-2.70) 0.0656 2.00 (1.00-4.00) 

CA19-9, median (IQR) 11.66 (7.86-22.88) 10.74 (5.84-22.80) 0.5287 11.00 (7.00-20.00) 

Location/growth pattern, No. (%)   0.7011  

Distal nondiffusion 114 (68.7) 55 (66.3)  96 (92.3) 

Diffusion/proximal 

nondiffusion 
52 (31.3) 28 (33.7)  

8 (7.7) 

ctT, No. (%)   0.9104  

T1-2  17 (10.2) 10 (12.0)  22 (21.2) 

T3  37 (22.3) 18 (21.7)  35 (33.7) 

T4 112 (67.5) 55 (66.3)  47 (45.1) 

ctN, No. (%)   0.7868  

N- 91 (54.8) 47 (56.6)  43 (41.3) 

N+ 75 (45.2) 36 (43.4)  61 (58.7) 

ctEMVI, No. (%)   0.7836  

Negative 99 (59.6) 51 (61.4)  60 (57.7) 

Positive 67 (40.4) 32 (38.6)  44 (42.3) 
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Survival outcomes   0.4290  

DFS time, median (IQR), 

months 
25.5 (12.0-46.0) 22.0 (12.0-45.0)  58.0 (33.0-71.5)  

DFS event, No. (%)     

Disease progression 58 (34.9) 33 (39.8)  40 (38.5) 

No disease progression 108 (65.1) 50 (60.2)  64 (61.5) 

NOTE. P values were calculated to verify the balance between the training and internal 

validation cohorts. Mann-Whitney U tests were used for continuous clinical risk factors, 

Chi-squared tests were applied for categorical variables, and log-rank test was conducted for 

survival outcomes. CEA, carcinoembryonic antigen, CA19-9, carbohydrate antigen 19-9; ctT, 

clinical T stage defined on MDCT; ctN, clinical N stage defined on MDCT; ctEMVI, 

extramural vessel invasion defined on MDCT; MDCT, multidetector-row computed 

tomography; DFS, disease-free survival; SD, standard deviation; IQR, interquartile range. 
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Table 2. Univariate and multivariate Cox regression analysis for clinical risk factors and 

radiomic signature in the training cohort. 

Factors 

Univariate Cox regression  Multivariate Cox regression 

HR (95% CI) P value  HR (95% CI) P value 

Age 1.009 (0.987-1.032) 0.4085  1.076 (0.723-1.601) 0.7176 

Sex    

 

 

Male 1 (reference)   1 (reference)  

Female 0.710 (0.382-1.319) 0.2784  0.691 (0.359-1.328) 0.2670 

CEA 1.004 (1.001-1.008) 0.0054  1.003 (0.995-1.011) 0.4620 

CA19-9 1.001 (1.000-1.002) 0.0154  0.996 (0.977-1.016) 0.6915 

Location/growth pattern    

 

 

Distal nondiffusion 1 (reference)   1 (reference)  

Diffusion/proximal 

nondiffusion 
3.005 (1.789-5.048) <0.0001  1.411 (0.722-2.760) 0.3140 

ctT    

 

 

T1-2 1 (reference)   1 (reference)  

T3 3.030 (0.365-25.157) 0.3047  1.622 (0.185-14.200) 0.6624 

T4 9.889 (1.367-71.569) 0.0233  1.946 (0.234-16.175) 0.5379 

ctN      

N- 1 (reference)   1 (reference)  

N+ 2.583 (1.509-4.421) 0.0005  1.246 (0.680-2.282) 0.4774 

ctEMVI    
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Negative 1 (reference)   1 (reference)  

Positive 5.377 (2.982-9.696) <0.0001  2.671 (1.266-5.634) 0.0099 

Radiomic signature 2.718 (1.965-3.761) <0.0001  1.543 (1.106-2.155) 0.0108 

NOTE. P values were calculated via Wald tests and bold values represented P < 0.05. HR, 

hazard ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CA19-9, carbohydrate 

antigen 19-9; ctT, clinical T stage defined on MDCT; ctN, clinical N stage defined on MDCT; 

ctEMVI, extramural vessel invasion defined on MDCT; MDCT, multidetector-row computed 

tomography. 
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Table 3. Performance of prognostic models. 

Cohorts 
Prognostic 

models 

Parameters 

C-index  

(95% CI) 

HR Time-dependent AUC 

AIC 

HR (95% CI) P value 1-year 2-year 3-year 

Training         

 
Radiomic 

nomogram 

0.760 

(0.696-0.824) 

2.743 

(2.054-3.665) 
<0.0001 0.725 0.765 0.786 497.22 

 
Radiomic 

signature 

0.694 

(0.626-0.763) 

2.718 

(1.965-3.761) 
<0.0001 0.650 0.658 0.711 512.07 

 
TNM staging 

model 

0.742 

(0.648-0.837) 

2.728 

(1.687-4.411) 
<0.0001 0.667 0.688 0.692 523.27 

Internal 

validation 
        

 
Radiomic 

nomogram 

0.720 

(0.636-0.804) 

2.411 

(1.565-3.715) 
0.0091 0.696 0.771 0.708  

 
Radiomic 

signature 

0.646 

(0.560-0.731) 

1.825 

(1.107-3.009) 
0.1169 0.665 0.695 0.587  

 
TNM staging 

model 

0.680 

(0.548-0.812) 

1.924 

(1.129-3.281) 
0.0134 0.644 0.677 0.690  

External 

validation 
        

 
Radiomic 

nomogram 

0.727 

(0.662-0.792) 

2.060 

(1.482-2.863) 
0.0014 0.742 0.765 0.762  

 
Radiomic 

signature 

0.693 

(0.617-0.770) 

1.694 

(1.220-2.352) 
0.0243 0.656 0.689 0.706  
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TNM staging 

model 

0.712 

(0.614-0.810) 

1.913 

(1.274-2.873) 
0.0012 0.712 0.688 0.709  

NOTE. Lower AIC values represented more generalized models. C-index, concordance index; 

CI, confidence interval; HR, hazard ratio; AUC, area under the curve; AIC, Akaike 

information criterion; TNM, tumor-node-metastasis.  
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