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Abstract—Gastric cancer (GC) is the third leading cause
of cancer-associated deaths globally. Accurate risk predic-
tion of the overall survival (OS) for GC patients shows sig-
nificant prognostic value, which helps identify and classify
patients into different risk groups to benefit from personal-
ized treatment. Many methods based on machine learning
algorithms have been widely explored to predict the risk
of OS. However, the accuracy of risk prediction has been
limited and remains a challenge with existing methods. Few
studies have proposed a framework and pay attention to
the low-level and high-level features separately for the risk
prediction of OS based on computed tomography images
of GC patients. To achieve high accuracy, we propose a
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multi-focus fusion convolutional neural network. The net-
work focuses on low-level and high-level features, where a
subnet to focus on lower-level features and the other en-
hanced subnet with lateral connection to focus on higher-
level semantic features. Three independent datasets of 640
GC patients are used to assess our method. Our proposed
network is evaluated by metrics of the concordance index
and hazard ratio. Our network outperforms state-of-the-art
methods with the highest concordance index and hazard
ratio in independent validation and test sets. Our results
prove that our architecture can unify the separate low-level
and high-level features into a single framework, and can be
a powerful method for accurate risk prediction of OS.

Index Terms—Overall survival, gastric cancer, multi-
level, CT image, deep learning.

[. INTRODUCTION

ASTRIC cancer (GC) is the third leading cause of
G cancer-associated deaths globally [1]. The tumor-node-
metastasis (TNM) staging manual of GC formulated by the
American Joint Committee on Cancer (AJCC) is widely-used
for prognostic evaluation, which serves as the guidelines to
recommend effective treatments to GC patients (e.g., adjuvant
chemotherapy, surgical resection) [2]. However, TNM staging
is obtained by pathological biopsy, which is invasive and may
cause inaccurate result on account of biopsy sampling and
subjective judgment. Currently, the rates of 5-year survival still
remain poor and the surgical morbidity is high [3]. Therefore,
the AJCC Personalized Medicine Core committee has realized
that it is crucial to construct image-based risk models to provide
better individualized treatment in combination with the TNM
staging manual [4].

Recently, emerging field called radiomics has been widely-
used for diagnosis and prognosis by extracting amounts of hand-
crafted features [5], [6]. Previous studies have demonstrated
that an emerging field of radiomics based on hand-engineered
features has significant prognostic value [7], which are related
to overall survival and can classify all patients into different risk
groups. Several studies indicate that hand-crafted features could
decode computed tomography (CT) phenotypes in the detection
and evaluation of the node stage for GC patients [8], [9]. Pre-
vious study shows that radiomics method can provide powerful
predictor for overall survival (OS) of GC patients [7]. However,
the hand-crafted features are not tailored, but predefined with
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a limited quantity [10]. In addition, some of these radiomics
methods for OS, based on the Cox Proportional Hazard (CPH)
method, can be applied only if strong assumptions are first
made [11]. The mentioned limitation has led to a transformation
from the work of hand-crafted features to self-learning features
for survival prediction.

Currently, high-capacity convolutional neural networks
(CNNs) show remarkable applications in the domain of com-
puter vision [12]-[17], and excellent performance in medical
image-based analysis, such as lung cancer [18], and glioblas-
toma [19]. Prior work shows that CNN can predict survival using
colorectal cancer histological images [20]. A previous study em-
ployed a shallow CNN to predict prognosis in multi-institutional
CT image datasets [21]. The results show that low-level feature
maps represented high spatial information [22]. Li et al. show
that low-level features within CNN could be applied to exploit
the intrinsic textural difference for region detection [23]. In our
previous study, we have found that high-level features extracted
by the residual network (ResNet), a single-level architecture, are
capable of predicting the risk score of OS for GC patients [24].
However, our previous work only has demonstrated the avail-
ability and superiority of residual network for survival prediction
compared with existing methods. Recent studies focus on a fea-
ture pyramid network (FPN) [25], [26], which exploits enhanced
high-level features for challenging computer vision tasks [27].
Jiang et al. proposes an architecture (S-net) to extract high-level
features for predicting survival risk and demonstrates that a deep
learning method can improve prognostic prediction [28].

However, few studies have proposed a framework focusing
on low-level and high-level features to boost performance for
OS risk prediction of GC patients with CT images. Therefore,
to achieve high performance, we propose a multi-focus and
multi-level fusion feature pyramid network (MMF-FPN), which
is utilized to unify separate lower level features and fused
high-level features [25].

The main contributive purposes of this work are summarized
as follows: 1) we propose a multi-focus architecture that consist
of two mono-focus fusion subnets to exploit rich information by
decoding the phenotype of tumor for OS risk prediction models.
2) We design a new strategy of cascade connection to extract
single and fused lower-level features maps in shadow bottom-
top pathway. 3) We collect multicenter survival datasets with
CT images. 4) The experimental results indicate that our well-
design architecture outperforms the competing model such as
the baseline of clinical model, radiomics model, and other state-
of-the-art deep learning models.

[I. RELATED WORK ON SURVIVAL ANALYSIS

A. Cox Regression and Log-Risk Function

The CPH regression model, also referred to the Cox regression
method [29], is widely used in survival analysis. The survival
function signifies the probability that each patient has survived
beyond time ¢, which is defined as

Surv(t) = Pro(T > t) = /Oop(T)dT, (1)
t

where Pro denotes the probability, and 7" denotes the survival
time for each patient. p(T") is hazard function. For the Cox

regression model, hazard function A(t) is defined as

Prot <T <t+d|T>1)

5 )
where the hazard function A(t) represents the probability of
death for an individual who has already survived up to time
t and survives the incremental amount of time J. A greater value
of A(t) denotes a higher risk of death. For the survival analysis,
suppose that each patient has the features of © = (1, ....., T ),
the hazard function is also defined as:

) = Jin

2

At @) = ho(t)es @), 3)
A
ho(e) = log ) = B @

where vector 3 is n X 1 and represents a set of coefficients and
*o(t) represents the base hazard when & = 0. hg(x) is the log-
risk (log-hazard) function, which is a linear function performed
by the CPH regression. A higher value of hg(x) indicates a
greater hazard of occurrence of an endpoint event. Note that the
log-hazard function can be applied for hand-crafted features and
clinical variables.

In our study, we collect 640 patients in three centers. During
the follow-up period, censored patients’ current statuses are
unknown due to the loss of track. We record the patients’ time
from the date of operation until the date of the final follow-up
as overall survival time. Uncensored events represent that the
patients who are observed for the cancer-related death. We
record the patients’ time from the date of operation until the
date of tumor-related death. Totally, 340 patients are censored.
The ratios of censored observations are 55% in training set, 49%
in validation set, and 56% in test set.

B. Problem Definition for Deep Learning

Our aim is to model the distribution of the log-risk function
hg(z) based on CT image information. Survival analysis can be
regarded as a regression problem by ranking all the patients. For
each patient, the time-to-event model is a “decoding” function,
which learns the patterns within the tumor and predicts the
survival risk over the log-risk space as hg(z). To easily describe
and understand the survival risk concerning the current condition
for each patient, we call the predicted value of hg(z) by each

method as the risk score fig(z).

C. Loss Function

For our proposed network, whereas MMF-FPN is agnostic to
the different loss function, we employ the negative log partial
likelihood as our loss function to enable a controlled comparison
with previous studies(e.g., [24], [28]). We train all the models
by minimizing the loss function for optimal estimation of pa-
rameters [3:

Z ehs(ei) | 5)

N
1 .
L(p) = N E hg (x;) — log |
=1 JEA(Ty)

In the equation, the number of patients is IV, and each patient is
with an uncensored status. Note that A(T}) is a set of patients
still at risk of failure (death) at time ¢. For a patient with event
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time 7 regardless of its status, if T > t, the patient will be in
the set A(7) to train the model. Therefore, any censored patient
belonging to A(7);) will be included in the evaluation of the loss
function. fzﬂ (z) is the output of our proposed network.

D. Predictive Accuracy Metrics

1. Concordance index

Each model is evaluated using Harrell’s concordance index
(c-index), which is a widely-used indicator for performance
evaluation [30]. The c-index is similar as the indicator of area
under the receiver operating characteristic curve (AUC) to time-
to-event survival data. The formula of c-index is defined as
follows:

. Z” A X 1 (ﬁ@ (x;) < ﬁg (a:])) x 1(T; < Tj)
- >, ki X L(T, < 1)

(6)

In the formula, to evaluate a model in a dataset, the fzg(xi) and
ﬁﬂ(xj) represent the predicted risk scores for patient ¢ and j
in a pair. The T} and T} denote the survival time for patient
i and j in a pair. The function of 1(hg(z;) < ﬁﬁ(xj)) is 1 if
the condition of hg(x;) < hgs (x;) is true, and O otherwise. The
function of 1(7; < T})is 1if Tj is less than T, and 0 otherwise.
The numerator of the equation counts the number of patient pairs
(i, j) where the pair members with greater predicted risk scores
have shorter survival time, denoting correspondence between
the predicted risk scores and ground-truth survival outcomes.
Production by A; denotes the requirement for the sum to subject
pairs where they are possible to determine who died first (that
is, informative pairs). Therefore, the C' (c-index) denotes the
fraction of informative pairs exhibiting concordance between
predictions and outcomes. The c-index of 0.5 denotes that the
risk score is no better than a coin-flip for risk prediction of OS.
The c-index of 1 denotes that the risk prediction is perfect in
determining which patient has a better prognosis [31].

2. Hazard ratio

For clinical evaluation, the hazard ratio (HR) is a widely-
used indicator to evaluate prognostic value for the method to
classify patients into different risk groups [32]. We employ the
HR to evaluate the prognostic value of each method. The cutoff
(median risk score) is obtained in the training set. We classify
patients with risk scores lower than the cutoff into the low-risk
group, and high-risk group otherwise. Assume that the outputted
risk score is a risk factor in low-risk and high-risk groups. The
value of HR represents the ratio of risk functions between the
high-risk and low-risk groups. Patients in the high-risk groups
are HR times the risk of morbidity of patients in the low-risk
group.

In our study, the statistical significance test is performed with
R software (http://www.R-project.org). Clinical variables and
hand-crafted features are compared using the Mann-Whitney
U test. Prognostic difference between different risk groups are
compared by the Log-Rank test. Moreover, we employ the G-rho
rank test for calculation of the HR [32]. We also compare the
C-indexes of our proposed method and other methods by the
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TABLE |
CLINICAL DATA FOR THREE INDEPENDENT DATASETS
Variabl Training Validation Test
ariables (Center 1)  (Center 2)  (Center 3)
Total 337 181 122
Age(years) 5549 59+12 58+12
Follow-up
(Month) 30+£19 2815 5327
Event
Censored 184 88 68
Uncensored 153 93 54

01 Continuous and numerical variables are (mean = std). During the follow-up period,
censored patients’ current statuses are unknown due to the loss of track. We record the
patients’ time from the date of operation until the date of the final follow-up as overall
survival time. Uncensored events represent that the patients who are observed for the
cancer-related death. We record the patients’ time from the date of operation until the date
of tumor-related death.

Student’s t-test. The result is considered statistically significant
when the P-value (two-sided test) is less than 0.05.

[Il. MATERIALS AND METHODS
A. Multicenter Survival Datasets

Ethical approval was respectively received for the Institu-
tional Review Board of each center, and informed consent from
patients was waived. Survival data consist of four parts for
each patient i(z;, T3, Fy, I;) : a patient’s clinical variables x,
an observed event time 7, a status of event indicator E and
CT images I. During the patient’s follow-up, if a patient is
observed (uncensored) with cancer-related death, we define the
indicator of E as 1, otherwise patient is lost to follow up and
the E is 0. Data from a total of 640 GC patients are collected
from three independent centers: 1) Lanzhou University Second
Hospital (337 cases), 2) Guizhou Provincial People’s Hospital
(181 cases), and 3) Guangdong General Hospital (122 cases).
We uniform the recruitment criteria for three centers to ensure
consistency (Fig. S1). Characteristics and clinicopathological
variables in the training, validation, and test sets are shown in
Table I and Table SI. Further details about the survival data
are provided in the supplementary (Section S1). The time of
OS is calculated from the date of operation until the date of
tumor-related death or the date of the final follow-up. We follow
up all the patients from January 2013 to March 2019, September
2012 to October 2017, and June 2010 to April 2019 in centerl,
center 2, and center 3, respectively.

B. Tumor Segmentation and Preprocessing

We employ the software ITK-SNAP for segmentation [33].
First, we identify the largest CT image slice in portal venous
phase which is the best phase for each patient by two experienced
radiologists in each center and outlined with a bounding box.
The same operation is applied to draw the nearest upper and
lower slices identified with tumor region. All the tumors are
covered by the bounding boxes. For impartial comparison, the
input image size is compatible with the ResNet (required inputs
size: 224 x 224). Fig. 1(a) is a schematic diagram, which shows
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(a) CTimages  Bounding box Target input

Size: 512x512 Size: 70x63 Size: 224x224

Mask Target input

(b) CTimages

® ¢ ¢

Size: 512><5‘;]2 Size: 70x63  Size: 70x63

Fig. 1. Image segmentation and preprocessing. (a) An example for
deep learning methods. (b) An example for radiomics method.

that the segmented CT images are resized as the target size of
224 x 224.The details for pre-processing methods are described
in the supplementary (Section S2). To construct the radiomics
model, we once more precisely manually delineate the tumor
region of the largest slice for each patient (Fig. 1(b)).

C. Architecture of Our Proposed Network

Our proposed network consists of four core components: (1)
a tailored network consisting of a pyramid framework and four
residual blocks as the backbone; (2) focusing on lower-level
layer-wise feature maps with a pyramid bottom-to-top path-
way; (3) focusing on higher-level semantic feature maps with
pyramid coarse-to-fine resolution pathway and layer-wise lateral
connections; (4) concatenation. We elaborate the details of the
core architectures as follows. The backbone of our network is
tailored as 10 layers based on four self-defined residual blocks,
and we utilize the output of each stage in the backbone (Fig. 2).
The outputted feature maps for convl, conv2, conv3, conv4,
and conv5 are represented as {C1, C2, C3, C4, C5}, and their
respective pyramid feature maps sizes are {112 x 112,56 x 506,
28 x 28,14 x 14,7 x T}.

Focusing on the fused lower-level features is to learn represen-
tative features from shallow layers. Some lower-level semantic
features are equivalent to the basic hand-crafted features, which
are related to the prognostic information of OS (e.g., T stage
and N stage [8], [9]). As shown in Fig. 2, this subnet unifies the
multi-level features maps obtained from different scale receptive
field {C1,C2,C3,C4,C5}. The architecture can ensure that each
module contains different numbers and combinations of multi-
level feature maps in different stages of convolutional blocks.
The fused features are conducive to capturing rich information
of the tumor phenotype.

The pyramid coarse-to-fine resolution pathway generates fea-
ture maps of finer resolution by upsampling the feature maps of
lower resolution from the top of the pyramid. The upsampled
feature maps are then reinforced with lower-level feature maps
from the bottom-to-top pathway via lateral addition. Fig. 2

exposes the multi-level pipelines that build our coarse-to-fine
resolution feature maps. In the subnet of focusing on higher-level
features, outputted feature maps are upsampled by a factor of
2. The aim of this coarse-to-fine pathway is to generate the
finest feature maps after four iterations. The description for each
generated feature map is referred to {P1, P2, P3, P4, P5}. One
of our design principles is to ensure simplicity and efficiency.
We have experimented with more sophisticated frameworks and
observed poorer results. We note that designing a better connec-
tion approach and sophisticated modules is not the attention of
this paper but efficient and suitable architecture for the accurate
risk prediction of OS.

The operation of concatenation serves to complement the loss
of information brought by fusion and convolution in each layer.
In the bottom-to-top pathway, we concatenate all multi-level fea-
tures to decode the tumor phenotype sufficiently. In the coarse-
to-fine pathway, we concatenate all reinforced high-level feature
maps and apply a 3 x 3 convolution to eliminate the aliasing
distort effect. The concatenation strategy can enforce convolu-
tions to comprehensively collaborate all multi-level semantic
features for accurate risk prediction with improved fusional
semantic features. We have made our source code of proposed
method available at https://github.com/dreamenwalker/Multi-
focusNet/.

IV. EXPERIMENTS AND RESULTS
A. Experiments and Existing Methods

The input images are two-dimensional (2D) segmented CT
image patches. Taking the cost of data collection and segmenta-
tion into consideration (we also train the radiomics model based
on hand-crafted features, which requires elaborate delineation
by radiologists for each slice of the CT images), we select three
available CT slices for each patient. The network architecture is
developed for RGB image resulting in a three-channel input. In
order to be suitable for the requirement and decode the tumor
phenotype entirely, each selected CT image slice is copied twice,
and the three slices are stacked as a three-channel image. The
average predicted probability is treated as the OS risk probability
for each patient.The risk score is the average of the predicted
risk values of three slices. We evaluate our proposed network
with three independent datasets from three centers. We train
our network and the compared methods using 1011 slices of
337 patients from center 1. We select optimal hyper-parameters
and weights for each method using 543 images of 181 patients
from center 2. We test the trained model using 366 images of
122 patients from center 3. We employ data augmentation to
avoid overfitting. For each patient in our datasets, classic aug-
mentation techniques are used including flipping, translation,
rotation, crop, sharpen, and linear contrast. More details for data
augmentation are illustrated in the supplementary (Section S2).

We evaluate our network MMF-FPN and the existing methods
of radiomics [7], FPN [25], S-net [28], residual CNN [24],
VGG16 [12], VGGI19 [12], Inception [13], DenseNet [14],
InceptionResNet [15], NASNetMobile [16], Xception [17], and
the clinical model using the c-index, HR, and KM curves as
indicators. Further details regarding the construction of the
radiomics model are shown in the supplementary (Section
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Fig. 2.

Architecture of the proposed network. The lower-level and higher-level feature maps are extracted by two mono-focus subnets, respectively.

They are fused to generate the multi-level feature maps. (a) The bottom-to-top connection effectively promotes the lower-level alignment of semantic
information. (b) The subnet to extract higher-level feature maps. The two mono-focus subnets are further reinforced by fusion and convolution
through lateral connections. Finally, the output is adaptively enhanced by the architecture.

Radiomics model

Low

Hand-crafted » Hand-crafted }> Cox

feature extraction feature selection regression
| High
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(b) Clinical model

7 Low

. Clinical Clinical Univariable Multivariable Cox

CT images data §> variables §> analysis §> analysis }> regression g
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10 7 (P-value <0.05) 3 (P-value <0.05) Risk score

Fig. 3.

Flowchart for construction of radiomics and clinical models. (a) radiomics model. To construct a radiomics model, 737 radiomics features are

extracted based on the region of interest (ROI) for each patient. Six radiomics features are selected by the LASSO with the 10 folds cross-validation
strategy. Radiomics model is constructed by the Cox proportional hazards model with selected six features. (b) clinical model. To construct a clinical
model, we collect 10 clinical variables including age, gender, tumor stage, node stage, tumor-node-metastasis (TNM) stage, tumor localization,
differentiation, adjuvant chemotherapy, lymphovascular invasion, and tumor size. The clinical model is constructed based on CPH method for
univariable and multivariable analysis. The three selected variables of tumor stage, node stage, and adjuvant chemotherapy are used to construct

a clinical model according to the P-values (less than 0.05).

S3). The details for the training procedure are provided in the
supplementary (Section S4). As shown in Table I, the rate of
censored observations in training, validation, and test sets is
55%,49%, and 56%, respectively. The high rate is a main issue
to impact the model performance. To mitigate this problem, we
set a large epoch to train deep learning model for convergence.
Furthermore, for radiomics method based on hand-crafted fea-
tures, we set iterations as 1000 with 10-fold cross-validation
to train the radiomics model. To demonstrate the incremental
improvement of the submodules of multi-focus architectures

for OS risk prediction, we perform ablation studies to explore
the impact of each mono-focus module. For clear comparisons,
we name the architectures that only focus on fused lower-level
and higher-level feature maps as FPN+FLL and FPN+FHL,
respectively. Fig. 3 describes the pipelines for the construction
of radiomics and clinical models. For an impartial comparison
of deep learning methods, the image size of input, epoch, batch
size, iteration, and the training and validation sets are consis-
tent. Pre-processing and augmentation are applied equally to all
image-based methods in the training dataset.
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TABLE Il
PERFORMANCE EVALUATION FOR EACH METHOD IN THREE DATASETS

C-index(95%CI)

Hazard ratio(95%CI)

Method POV Training Validation Test Training Validation Test
057 051 05 167 1.03 0.79
Vel 147 053.062) (0450.57) (041-0.59) (121-232)  (0.69-155)  (0.46-135)
0.6 0.52 0.59 1.92 1.04 2.01
VGG1I 2000 056:065) (0.46-0.58)  (05-0.67)  (1.39-2.66)  (0.67-1.63)  (1.13-3.58)
DenseNet o 0.62 0.57 0.6 22 1.49 1.49
censeive : (0.58-0.67) (0.51-0.63)  (0.52-0.68)  (1.58-3.06)  (0.98-2.26)  (0.82-2.7)
Incen o1s 0.66 0.58 0.58 2.53 125 0.9
neeption 0 0.62-071)  (0.52-0.64)  (0.5-0.65)  (1.83-3.51)  (0.83-1.88)  (0.51-1.57)
IncenionResNel 543 0.71 0.57 0.68 3.66 137 211
R 3 (067-075) (05063 (061-076) (2.59-5.16)  (0.91-2.07)  (1.08-4.09)
. 0.57 0.54 0.53 137 133 1.58
NASNet-Mobile - 42 15061y (048-06)  (045-061)  (0.99-1.88)  (0.882)  (0.84-2.94)
eention 208 0.66 0.58 0.66 276 1.84 251
ceptio : 0.62:0.7)  (0.52-0.64)  (0.59-0.73)  (1.98-3.87)  (1.22:2.77)  (1.13-5.56)
ResNeL 18 s 0.68 0.53 0.68 2.89 0.97 2.44
esivet C 0 (0.64-0.72)  (0.47-0.59)  (0.61-0.76)  (2.06-4.05)  (0.63-1.5)  (1.19-4.99)
0.68 0.58 0.71 3.15 1.63 0.71
ResNet-I8+FPN 138 064 072)  (0.52-0.64) (0.64-0.78)  (2.24-443)  (1.08-2.45)  (0.64-0.78)
ResNeLs0 ’3s 0.74 0.51 0.57 35 1.39 121
esNet- 35 071:077)  (045-0.57)  (0.480.65)  (247-495)  (0.90-2.14)  (0.67-2.16)
0.79 0.59 0.62 5.01 1.76 173
ResNet-50+FPN 269 0 75.0.82) (0.53-0.65) (0.54-0.7)  (3.53-7.11)  (1.17-2.66)  (0.96-3.1)
Clinical ) 0.75 0.70 0.68 438 2.99 271
1nica (0.71-0.79)  (0.64-0.76)  (0.61-0.76)  (2.99-6.40)  (1.66-5.41)  (1.36-5.38)
Radiomics ) 0.66 0.54 0.73 234 135 )
i (0.62-070)  (0.48-0.60)  (0.66-0.80)  (1.68-3.25)  (0.80-2.29)  (1.88-31.78)
et g 0.65 0.58 0.68 225 1.77 6.12
-ne B 060069 (052:064) (0.61-0.76) (1.62-3.12)  (1.17-2.68)  (2.21-16.99)
0.77 0.74 0.76 5.57 3.50 9.46
BAD LFE R 36 (074-081)  (0.69-0.79)  (0.70-0.82)  (3.89-7.99)  (227-537) (2.30-38.91)

01 95%CT: 95% confidence interval; clinical and radiomics represents the model constructed by the Lasso-Cox method using clinical variables
and hand-crafted features, respectively; the ResNet-18-FPN and ResNet-50-FPN represent that the models apply the ResNet-18 and ResNet-50
as the backbone in combination with FPN, respectively. The range of the c-index is from 0.5 to 1. The higher c-index denotes better risk
prediction of OS. Generally, HR is greater than one for evaluation of survival model. The higher HR is, the better model performance is.

B. Comparisons With Existing Methods

We compare our proposed method with the clinical model,
radiomics model, and other methods in Table II. The results
indicate that MMF-FPN exhibits robust performance in three
sets (training set: c-index: 0.77, 95% confidence interval (CI):
0.74-0.81; Validation set: 0.74, 95%CI: 0.69-0.79; Test set: 0.76,
95%CI: 0.70-0.82). P-values for the comparison between the
c-index of our method and the other mentioned methods are
significant (all P-values < 0.05) except for the overfitted ResNet-
50-FPN method compared in training set (P-value is 0.81). Our
method shows the best discrimination capability with the highest
c-index in the validation set, for which the comparison of c-
index is significant (P-value < 8.6e-06) except for the clinical
model (P-value = 0.11). The MMF-FPN also outperforms other
methods in the external test sets with a significant difference
(P-value < 0.05) except for the radiomics model (P-value =
0.1).

C. Assessment With Hazard Ratio and KM Curves

To evaluate the prognostic value for each method (model), all
patients in each set are classified into either low-risk or high-risk
groups based on the cutoff of the median risk score obtained from
the training set. The P-value indicates the difference between
the two risk groups (P-value < 0.05 indicates that the two
risk groups that have a discrepant prognosis). As is shown in

Table I, the clinical indicator of the HR (highest in the training
set: 5.57, 95%CI: 3.89-7.99; highest in the validation set: 3.50,
95%CI: 2.27-5.37; highest in the test set: 9.46 95%CI: 2.30-
38.91) demonstrates three points: 1) the risk score outputted by
our proposed method for each patient is the best signature for
risk classification; 2) our method is the most powerful model
to dividing people into two risk groups compared with other
models; 3) The high-risk group identified by our method has the
highest risk of death. Moreover, we also interestingly find that
our method shows a higher HR than that of ResNet-50-FPN,
despite the lower c-index. The KM curves for major compar-
isons are plotted for the three datasets respectively in Fig. 4.
Our multi-focus network outperforms the other methods and
demonstrates its capability about OS to stratify GC patients into
low-risk and high-risk groups with discrepant prognosis in three
datasets.

D. Impact of Each Mono-Focus Component

To understand which mono-focus subnet is critical for im-
provement of model performance, we analyze the subnets on
the three datasets. Table III shows that two mono-focus sub-
nets improve robustness in the validation and test sets. In the
validation set, the risk score predicted only by the backbone
(no mono-focus subnet) is 0.62 (0.56-0.68) and 0.67 (0.60-0.75)
in test set. The backbone in combination with the mono-focus
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Fig. 4. Evaluation of prognostic value with KM curves for each method. For each survival curve, the dotted line represents the number of patients

in the different risk groups who would survive with a survival probability of 0.5. The P-values is calculated by Log-Rank test, which shows the

prognostic differences between high-risk and low-risk groups.

subnet (focus on lower-level semantic features) exhibits a higher
c-index (0.71, 95%CI:0.67-0.74) and a better prognostic value
(HR: 3.61, 95%CI: 2.57-5.08). The other mono-focus subnet
(focus on higher-level semantic features) also provides an in-
cremental margin for the c-index (c-index in the validation
set: 0.65 vs 0.62, test set: 0.69 vs 0.67) and prognostic value
(HR in validation set: 2.08 vs 1.46, test set: 3.1 vs 2.8). The
MMF-FPN achieves the highest c-indexes in validation and test
sets (validation set: 0.74 (MMF-FPN) vs 0.67 vs 0.65; test set:
0.76 (MMF-FPN) vs 0.72 vs 0.69). The KM curves (Fig. 5) also
indicate a significant difference between two risk groups in the
validation and test sets, and the significance level in the two sets
is improved compared to the backbone (validation set: 0.00 045
(focusing on higher-level) vs 0.00 017 (focusing on lower-level)
vs 0.073 (baseline); test set: 0.0012 vs 0.00 052 vs 0.0033).

V. DISCUSSION

In this study, the proposed network, MMF-FPN, outperforms
other competing methods, based on the evaluation of the c-index,
HR, and KM curves in the validation and test sets. The good
performance of MMF-FPN indicates that our architecture uni-
fies the separate low-level and high-level features into a single
framework, and reasons global information about the multi-level
features to predict survival risk accurately.

Currently, CNNs attract much attention in survival analy-
sis [24], [34]. For the existing CNN methods applied to survival
prediction, the architectures may be limited for processing CT
images. Because these methods can only extract single high-
level features for local detailed information. The conventional
CNNs do not fully utilize single and fused multi-level features.
Although the S-net exploit the different high-level features for
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TABLE IlI
ABLATION EXPERIMENTS OF PERFORMANCE EVALUATION FOR THE MONO-FOCUS COMPONENTS

c-index (95%CI)

Hazard ratio(95%CI)

Method Training Validation Test Training Validation Test
Backbone 0.70 0.62 0.67 2.67 1.46 2.8
(0.66-0.74) (0.56-0.68)  (0.60-0.75)  (1.91-3.73)  (0.96-2.22)  (1.37-5.74)
Backbone + FLL 0.71 0.67 0.72 3.61 2.21 3.32
0.67-0.74)  (0.62-0.73)  (0.66-0.78)  (2.57-5.08) (1.45-3.37) (1.62-6.81)
Backbone + FHL 0.69 0.65 0.69 2.51 2.08 3.1
(0.65-0.73) (0.59-0.7) (0.62-0.76)  (1.81-3.49)  (1.37-3.17)  (1.51-6.34)

01 Backbone + FLL and Backbone + FHL represent the model consist of backbone combined with the mono-focus component for
lower-level feature maps and the mono-focus component for higher-level feature maps, respectively.
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Fig. 5.

survival prediction [28], it does not consider the shallow use-
ful information with the continuous operations of pooling and
convolution. Although the network proposed in our previous
study has better performance, the network is not tailored but
modified based on ResNet-18 architecture, and the network is
only evaluated in training and validation sets. The network is no
independent test set to evaluate the model objectively. In order
to further explore whether a tailored deep learning method can
establish a stable model for survival prediction, a new network
framework is proposed to predict the survival risk. The results
of this work indicate that the multi-focus network is robust for
prediction of survival risk.

Our ablation studies indicate that the performance for the
mono-focus networks in the prognosis analysis follows the order
of MMF-FPN > backbone+FLL > backbone+FHL > backbone
(table II and III). Our multi-focus network outperforms the

Evaluation of prognostic value with KM curves for each component.

standard mono-focus networks and the backbone (FPN), which
illustrates that the multi-focus architecture is effective for the
improvement of the OS risk prediction. Our network reveals
that lower-level features in the shallow layers contain prognostic
information to improve the risk prediction of OS. We also
observe that the separate lower-level and enhanced higher-level
features can boost performance for risk prediction of OS.

Our proposed network can extract more relevant features to
decode the tumor phenotype. In clinical practice, some radiomic
phenotypic features (e.g., tumor size, tumor shape) are important
for radiologists to specify surgical plans [7], [34]. However,
these features are predefined, and the number of hand-crafted
features is limited, which caused the limited ability to analyze di-
verse patients. Actually, the hand-crafted features (e.g., wavelet
features, texture features) are extracted by a single operation of
convolution, which are similar as the feature maps extracted in
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shallow layers. Therefore, we design the cascaded bottom-to -up
subnetwork to extract the low-level features, which can extract
some basic information like radiomics features. Focusing on
low-level features is compelling due to the easy-to-understand
semantic information and the attachment of stationary weights
to specific locations.

In recent years, inspired by human perception that focuses
on a sequence of several important parts to process a whole
scene better, deep learning shows powerful ability to capture
the discriminative local details by continuous operations of
pooling and convolution [25]. However, the subsampling of the
operations causes the loss of global information. For the overall
survival prediction, the single high-level deep learning features
are limited to extract discriminative features. Compared to the
existing CNNs, the cascaded bottom-to-up subnet extracts the
low-level features. The second subnet, upsampling architecture,
has greater expressive power with fused high-level feature maps
than single high-level feature maps in the last few convolutional
layers retaining these invariance properties of details. In par-
ticular, our upsampling subnet fuses the low-level information
separately and avoid the information consumption in deep layers
and keeps the feature aggregation to adapt to OS risk prediction.

We note some limitations for our study. Although our datasets
are collected from three centers, our multicentric datasets exist
unbalanced distribution of clinical data (e.g., gender, survival
time), which may cause the impact on our results. Our datasets
also have a high rate of censored observations, which is more
than fifty percent in training and test sets. The censored pa-
tients are the samples with no label, which may cause poor
performance of the proposed network and cost long time for
training. In our study, we found that the deep learning model
is not robust with the small epoch (e.g., epoch = 20-50), and
the radiomics model is not converged with small iteration (e.g.,
iteration = 100). Thus, we set a large epoch and iteration to
train the model for convergence. Besides, further work should
be done to investigate the impact of censored observations. In
our study, considering that the workload is huge for elaborate
delineation, we only select three slices for each patient. Further
work should be done to train the model with whole tumor slices
or more slices. We evaluate the generalization and applicability
of our method on lung cancer data from TCIA(Fig. S2) [35], our
network can also significantly divide all lung cancer patients
into different risk groups. Therefore, whether a CNN can be
efficient for different cancer types (e.g., lung cancer, head and
neck cancer) simultaneously should be explored.

VI. CONCLUSION

In conclusion, we propose a multi-focus network, MMF-FPN,
to fuse multi-level features for OS risk prediction of GC patients.
The MMF-FPN outperforms the radiomics method and existing
deep learning networks. Notably, the MMF-FPN can provide
OS-related prognostic risk scores and classify GC patients into
different risk groups with the highest HR compared with the
competing methods. Our results prove that our architecture can
unify the separate low-level and high-level features into a single
framework, and can be a powerful method for accurate risk
prediction of OS.
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