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A B S T R A C T   

Purpose: This work aimed to develop and validate a deep learning radiomics model for evaluating serosa invasion 
in gastric cancer. 
Materials and Methods: A total of 572 gastric cancer patients were included in this study. Firstly, we retrospec
tively enrolled 428 consecutive patients (252 in the training set and 176 in the test set I) with pathological 
confirmed T3 or T4a. Subsequently, 144 patients who were clinically diagnosed cT3 or cT4a were prospectively 
allocated to the test set II. Histological verification was based on the surgical specimens. CT findings were 
determined by a panel of three radiologists. Conventional hand-crafted features and deep learning features were 
extracted from three phases CT images and were utilized to build radiomics signatures via machine learning 
methods. Incorporating the radiomics signatures and CT findings, a radiomics nomogram was developed via 
multivariable logistic regression. Its diagnostic ability was measured using receiver operating characteristiccurve 
analysis. 
Results: The radiomics signatures, built with support vector machine or artificial neural network, showed good 
performance for discriminating T4a in the test I and II sets with area under curves (AUCs) of 0.76− 0.78 and 
0.79− 0.84. The nomogram had powerful diagnostic ability in all training, test I and II sets with AUCs of 0.90 (95 
% CI, 0.86− 0.94), 0.87 (95 % CI, 0.82− 0.92) and 0.90 (95 % CI, 0.85− 0.96) respectively. The net reclassifi
cation index revealed that the radiomics nomogram had significantly better performance than the clinical model 
(p-values < 0.05). 
Conclusions: The deep learning radiomics model based on CT images is effective at discriminating serosa invasion 
in gastric cancer.   

1. Introduction 

Gastric cancer, a common malignancy with a poor prognosis, is listed 

as the second leading cause of cancer mortality worldwide [1]. Accurate 
staging plays an important role in determining the appropriate man
agement of patients and the prediction of postoperative survival [2–4]. 

Abbreviation: MDCT, multidetector computed tomography; AUC, areaunder curve; ROC, receiver operating characteristic curve; SVM, support vector machine; 
ANN, artificial neural network; NRI, Netre classification index; ROI, regions of interest; AIC, akaike information criterion; DCNN, deep convolutional neural net
works; ICC, intra-/inter-class correlation coefficients; RBF, radial basis function. 
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For the pretreatment baseline cases, serosa positive is considered to 
increase the risk of micrometastases and peritoneal dissemination [3]. In 
the present study, the good control of micrometastases is considered to 
be one of the effects of neoadjuvant chemotherapy which could 
contribute to the decrease of peritoneal recurrence and improve 
long-term survival of local advanced gastric cancer [4,5]. Furthermore, 
the accurate assessment of pretreatment serosa invasion is a prerequisite 
to select patients in terms of avoiding overtreatment [6]. 

In clinical practice, noninvasive imaging modalities such as multi
detector computed tomography (MDCT) play an important role in the 
diagnosis and staging of gastric malignancies [7,8]. Previous study 
compared the overall accuracy of T staging via endoscopic ultrasonog
raphy (EUS) and MDCT, which was 75 % and 77 %, respectively [9]. 
However, EUS is only used to detect intracavitary lesions. For clinical 
T4a (cT4a) gastric cancer staging, the reported diagnostic sensitivity of 
EUS was unacquirable [9]. MDCT is the most effective way to detect 
lesions that break through the serosa [7,9,10]. 

However, the differentiation of serosa invasion remains a diagnostic 
dilemma for radiologists. CT accuracy for preoperative T staging was 
reported to be 75 %–94 % [7,10,11]. But for cT4a gastric cancer staging, 
the reported diagnostic accuracy was about 77 % [9]. The individual 
perspective and clinical experience of radiologists could interpret the 
difference. 

Radiomics analysis of large imaging datasets has been successfully 
employed in the field of oncology for noninvasively profiling tumor 
heterogeneity and there is a growing interest within the field in 
exploring the associations between tumor heterogeneity and imaging 
features [12–16]. Meanwhile, the novel deep learning techniques have 
shown the promising capabilities in principal representation learning 
and extraction of correlative features without human intervention [17]. 
To our knowledge, few studies [18,19] have explored a radiomics-based 
classification of different gastric tumors. We hypothesized that deep 
learning could potentially add valuable information to diagnosis by 
capturing more features beyond a visual interpretation. In this present 
work, we investigate the value of deep learning radiomics analysis for 
differentiating T3 and T4a stage gastric cancers. 

2. Materials and methods 

2.1. Patients 

This study contained two parts, including phase I retrospective study 
and phase II validation study. The flowchart is shown in Fig. 1. 

The phase I retrospective study was approved by the institutional 
review board of our institution, and the requirement of informed con
sent was waived. A total of 428 consecutive patients who underwent 
MDCT scan prior to surgical treatment from January 2009 to December 
2015 were enrolled retrospectively according to the following inclusion 
and exclusion criteria. The inclusion criteria were patients who had 
pathological proven pT3 or pT4 gastric adenocarcinoma. The exclusion 
criteria were patients who (a) had history of previous chemoradiation; 
(b) had history of previous gastrectomy or endoscopic surgery; (c) had 
not undergone gastrectomy within 2 weeks after preoperative CT. 

To make the sample size of training set enough for a relative suffi
cient model development, while to ensure high power and general
isability of test results, we allocated the patients to the training set and 
test set I according to the time of preoperative CT in a 2:1 ratio by 
January 1 st 2014. The first 252 patients were allocated to the training 
set and the subsequent 176 patients were allocated to the test set I. 

The phase II validation study was approved by our institution review 
board, and informed consent was obtained from all patients. Patients 
who were scheduled to undergo preoperative CT and were clinical 
diagnosed cT3 or cT4a between January 2016 and January 2017 were 
eligible to be prospectively included in this study. The exclusion criteria 
were the same as phase I. A total of 144 consecutive patients who met 
the study criteria were recruited and allocated to the test set II. The 
pathological results were not known until the gastrectomy was under
taken. The patient enrolment flowchart of the phase II validation study is 
shown in Fig. 2. The clinical characteristics of all patients are shown in 
Table 1. 

2.2. Histological evaluation 

The pathological features of gastric cancer were officially reported 
by a specialist pathologist with 15 years of experience in gastrointestinal 
pathology. Pathological T stage was determined using the pathological 
findings of surgical specimens as reference standards according to the 

Fig. 1. Radiomics modeling and analysis workflow in this study.  
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eighth edition of the AJCC and the UICC TNM classification [20]. The 
tumor locations were recorded as fundus, body and antrum. When the 
tumor occupied more than two areas, the pathological T stage was 
determined according to the deepest invasion of the tumor. 

2.3. CT protocol 

Each patient had been fasting prior to the CT examination for more 
than 8 h. To reduce gastric motility and enable gastric distention, the 
patients were given an intramuscular injection of 10 mg Anisodamine 
10− 15 min before the examination and received 8 g gas-producing 
crystals orally with 10 mL of water orally shortly before CT scanning. 
Upper abdominal unenhanced CT scans from the diaphragmatic domes 
to 2 cm below the lower margin of the air-distended gastric body were 
acquired. Subsequently, the scans were started after intravenous injec
tion of non-ionic contrast material (1.5 ml/kg body weight; Omnipaque 
300, GE Healthcare) at a rate of 3 ml/s by a high pressure injector via the 
antecubital vein. The following scan parameters were used: tube peak 
voltage 120–140 KV, tube current 300 mAs, collimation thickness 1.25 
mm, helical pitch 1.5:1. Contrast-enhanced CT scans were performed in 
the arterial phase (start delay, 30 s), in the portal venous phase (70 s), in 
the delayed phase (180 s). 

2.4. CT finding evaluation 

CT images were analyzed by 2 radiologists (with 6 and 15 years of 
experience in abdominal imaging, respectively), both were blinded to 

the histopathology results. For the cases (n = 93, Table S1) with 
discrepancy in the subjective evaluation between the two readers, these 
were reviewed by a third expert (with over 20 years of experience in 
abdominal imaging) to make an arbitration for further analysis. 

In the paper written by Kim et al., the association between the high 
density outer layer of the gastric wall and the involvement of the serosa 
was hypothesized and defined as hyperattenuating serosa sign [21]. The 
high enhanced serosa sign on CT was defined as a focal or diffuse 
thickened hyperattenuating outer layer of the gastric wall. For all pa
tients, the clinical stages of T3 and T4, as well as the following con
ventional CT features were recorded: the extraluminal extension, 
including nodular extension and cord irregular outer layer, and the 
blurring and obliteration of the fat plane [2]. The extraluminal extension 
was defined as the irregular outer layer of the gastric wall. The blurring 
and obliteration of the fat plane was defined as linear or reticular 
structures in the fatty layer surrounding the cancerous lesion exhibiting 
a lack of a clear perigastric fat plane. Examples of these CT findings were 
shown in Fig. 3a-c. 

2.5. Image segmentation 

CT images were retrieved from the picture archiving and commu
nication system (PACS) and then loaded into ITK-SNAP software 
(version 3.6.0; www.itksnap.org) for manual segmentation. A radiolo
gist (reader 1) outlined the regions of interest (ROIs) on CT images of the 
three phases respectively. For each CT phase, the radiologist selected the 
slice with the largest tumor area and a two-dimensional ROI was then 
delineated using a margin that included all tumor area (Fig. 4a-f). 
Therefore, there were three different ROIs being segmented for each 
patient in this study. 

ROIs were drawn along the contour of the tumor carefully to avoid 
involving adjacent fluid or air. If a high mixed-intensity cord like 
extragastric extension was found, the ROIs were drawn with contouring 
of the abnormal density. If low mixed-density was found (<20HU) such 
as fat blurring and exhibiting a lack of a clear perigastric fat plane, the 
ROIs were drawn avoiding fat extension(Fig. 4f). When the tumor 
occupied more than two areas, all the region were selected and 
segmented. After over three months, 50 patients in the training set were 
selected randomly. Then, the reader 1 and another radiologist (reader 2) 
segmented their ROIs and evaluated their CT findings again to assess 
intra-/inter-reader agreement of the radiomics analysis. 

2.6. Radiomics feature extraction 

Both deep learning features and hand-crafted features were extracted 
to quantify the tumor phenotype (Fig. 1). We referred to the Image 
Biomarker Standardisation Initiative (IBSI) and Radiomic Ontology [22, 
23] to standardize the algorithms of feature extraction. For each CT 
phase, 112 deep learning features and 115 hand-crafted features were 
extracted. 

We constructed and trained three deep convolutional neural net
works (DCNNs) which all contained 6 weighted layers to extract deep 
learning features on the three groups of ROIs (Fig. S1). Note that, in 
order to avoid over-fitting of our model, we trained the DCNN in an 
unsupervised manner, and used the hierarchical convolutional structure 
as feature extraction network. The architecture and implementation of 
our DCNNs and the feature extraction pipeline were described in the 
Supplemental material in detail. 

2.7. Feature selection and radiomics signature building 

We built three radiomics signatures reflecting the phenotypic char
acteristics of the tumor in arterial phase, portal venous phase and 
delayed phase CT images respectively as independent predictors of 
serosa invasion, i.e. the arterial signature, the portal venous signature 
and the delayed signature. 

Fig. 2. Flowchart of the phase II validation study profile based on inclu
sion criteria. 

Table 1 
Clinicopathological characteristics of patients in the three sets.   

Training set Test set I Test set II 

Age (years) 64.4 ± 12.1 61.5 ± 10.7 59.2 ± 10.7 
Gender    
Male 176 118 103 
Female 76 58 41 
Pathological T stage    
T2 0 0 8 
T3 89 94 73 
T4 163 82 63 
Location    
Fundus 118 52 37 
Body 70 62 69 
Antrum 56 51 30 
Multiple 8 11 8  
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Fig. 3. Conventional CT features of serosa invasion and example of the manual segmentation. (a) Nodular extension; (b) Cord out layer; (c) Perigastric fat infiltration.  

Fig. 4. Examples of the manual segmentation. (a) (c) (e) Diffusely infiltrating mass with heterogeneous enhancement; (b) (d) (f) Manual segmentations on the portal 
venous phase CT. ROIs were drawn along the contour of the tumor, avoiding the blood vessel (arrow) and fat infiltration (triangle). 
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Based on the training set, we implemented multiple processes of 
feature selection and signature building to avoid model over-fitting and 
to improve the performance (Fig. 1), as details described in Supple
mental material. We firstly utilized the intra-/inter-class correlation 
coefficients (ICC) to assess feature reproducibility. Then, the consensus 
clustering [24,25] and the least absolute shrinkage and selection oper
ator (LASSO) method were successively conducted to reduce the fea
tures’ redundancy and to determine the candidate set of predictive 
features. Finally, five machine learning models were compared via 
cross-validation. The best performing model, as well as the best com
bination of features, was selected to build the signature of each CT 
phase. 

2.8. Statistical analysis 

We conducted univariate analysis to assess the differences in patient 
variables between the different groups using the independent t-test or 
Mann-Whitney U test for continuous variables, and Fisher’s exact test or 
chi-square test for categorical variables. Multivariable logistic regres
sion analysis was used to identify independent predictors. Backward, 
step-wise selection was applied by using the likelihood-ratio test with 
Akaike’s information criterion (AIC) as the stopping rule. We built a 
quantitative radiomics nomogram to predict the probability of serosa 
invasion with the clinical characteristics and radiomics signatures, as 
well as a clinical model containing only the clinical characteristics. We 
also built two phenotypic models, which contained only the signatures 
incorporating hand-crafted features (phenotypic model 1) and only the 
signatures incorporating deep learning features (phenotypic model 2) 
respectively, for the purpose of comparison. The collinearity of each 
variable in the regression model was checked using variance inflation 
factor (VIF). The variables with VIF > 5 were excluded. 

The radiomics nomogram was assessed via the area under curve 
(AUC) of the receiver operating characteristic (ROC) curve, the cali
bration curve with the Hosmer-Lemeshow test and accuracy. Delong test 
was used to compared different ROC curves. Net reclassification index 
(NRI) was used to evaluate the improvement of predictive performances. 

To assess the association of radiomics nomogram with serosa inva
sion in different clinical subgroups, a stratified analysis was presented 
by the gender, age, tumor location and CT system on the patients of test 
sets. The 50 selected patients, with the re-segmented ROIs and the re- 
evaluated CT findings, were utilized to determine the intra-/inter- 
reader agreement of radiomics nomogram via the Kappa test. 

Furthermore, to evaluate the reproducibility of our model’s diagnostic 
performance, we repeated the randomized assignment of training/test 
sets 10 times. Subsequently, the model was re-trained and validated 
repeatedly. 

The softwares used in this study are reported in the Supplemental 
material. 

3. Results 

3.1. Clinical characteristics of the patients 

Demographic data and CT findings in the training set (n = 252), test I 
set (n = 176) and test II set (n = 144) are listed in Table 2. The median 
(range) ages of the three sets were 64 (29–90) years, 62 (30–86) years 
and 60 (29–85) years respectively, and the proportion of females were 
30.2 %, 33.0 % and 28.5 % respectively. cT, nodular extension, cord out 
layer, perigastric fat infiltration and the high enhanced serosa sign 
differed significantly between T3 group and T4 group in the training set 
(p-values < 0.05). 

3.2. Radiomics signature building and validation 

As presented in Table S2-S4, most of radiomics features (132 arterial 
features, 152 portal venous features and 113 delayed features) demon
strated to have a good intra-reader agreement. In the consensus clus
tering step, 40, 58 and 33 distinct clusters were obtained respectively 
(Fig. S2) and only the medoid features were retained. The feautres were 
further reduced to 18, 15 and 14 predictive candidate features, which 
had non-zero coefficients in the LASSO logistic regression (Fig. S3). 
Based on these features, we built signatures using five kinds of models 
and validated them through cross-validation in the training set. For 
arterial phase CT, the best model was artificial neural network (ANN) 
with five hidden nodes, and it yielded a cross-validation accuracy of 
0.706. For portal venous phase CT, radial basis function (RBF) kernel 
support vector machine (SVM) with the penalty parameter of 1.41 and 
the kernel coefficient of 0.22 yielded the highest cross-validation accu
racy of 0.725. For delayed phase CT, yielding a cross-validation accu
racy of 0.726, the best model was ANN with seven hidden nodes. The 
detailed results of cross-validation are listed in Table S5. Therefore, 
three radiomics signatures were built using the two different kinds of 
models, and as listed in Table S6, they had six, four and three input 
features respectively. The experimental results demonstrated the three 

Table 2 
Univariate analysis of clinical characteristics and CT findings.  

Characteristic Training 
set    

Test set I    Test set II     

Total T3 T4 p-value Total T3 T4 p-value Total T2/T3 T4 p-value 

Age(years) 64.4 ±
12.1 

64.9 ±
10.6 

64.1 ±
12.9 

0.618 61.5 ±
10.7 

61.0 ±
10.6 

62.0 ±
10.8 

0.742 59.2 ±
10.7 

58.8 ±
10.2 

59.7 ±
11.4 

0.634 

Gender    0.232    0.201    0.254 
Male 176 58 118  118 67 51  103 61 42  
Female 76 31 45  58 27 31  41 20 21  
cT stage    <0.001    <0.001    0.001 
3 69 43 26  72 52 20  72 52 20  
4 183 46 137  104 42 62  72 29 43  
Nodular extension    <0.001    <0.001    0.001 
negative 126 62 64  119 77 42  104 67 37  
positive 126 27 99  57 17 40  40 14 26  
Cord out layer    <0.001    0.001    0.001 
negative 66 41 25  52 38 14  65 46 19  
positive 186 48 138  124 56 68  79 35 44  
Fat infiltration    <0.001    <0.001    <0.001 
negative 105 59 46  103 74 29  68 51 17  
positive 147 30 117  73 20 53  76 30 46  
High enhanced serosa 

sign    
<0.001    <0.001    <0.001 

negative 128 68 60  112 78 34  102 68 34  
positive 124 21 103  64 16 48  42 13 29   
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signatures yielded good performance for discriminating T4 stage in the 
test set I and II with AUCs of 0.76− 0.78 and 0.79− 0.84 (Table S6). 

3.3. Development and validation of radiomics nomogram 

Beginning with the three radiomics signatures and the clinical 
characteristics, multivariate logistic regression analysis with stepwise 
backward elimination was applied. The results determined that the 
radiomics signatures, nodular extension, fat infiltration and high 
enhanced serosa sign remained significant after adjustment for cofactors 
(Table S7). A radiomics nomogram was built by using the above 
regression coefficients as a quantitative method for noninvasive T4 stage 
prediction (Fig. 5). Meanwhile, the clinical model incorporated cT stage, 
nodular extension, fat infiltration and high enhanced serosa sign 
(Table S8). In regression analysis, the radiomics nomogram yielded a 
relative low AIC (Table 3), suggesting it had a good global model fit. 

The radiomics nomogram showed good discriminationon all 
training, test I and II sets with AUCs of 0.90 (95 % CI, 0.86− 0.94), 0.87 
(95 % CI, 0.82− 0.92) and 0.90 (95 % CI, 0.85− 0.96) respectively 
(Fig. 6a-c). The Delong test was implemented on the ROC curves to 
assess possible overfitting and revealed that the differences were not 
statistically significant between AUCs on the three sets with p-values >
0.408. The radiomics nomogram yielded the highest accuracies (range 
0.80− 0.85, Table 3) and the best calibration to the overall risk (Fig. S4) 
among the four comparative models on the test sets. Furthermore, the 
NRI revealed that it had significantly better performance than the clin
ical model and the phenotypic model 1 (NRI, range 0.140− 0.240; p- 
values < 0.008). Built based on the deep learning features, the pheno
typic model 2 achieved somewhat weaker diagnostic ability than the 
radiomics nomogram, and yielded a relative low accuracy on the test set 
I. The nomogram calibration curve demonstrated good agreement be
tween prediction and observation in the three sets (Fig. 6d). The 
Hosmer-Lemeshow test was not significant (p-values = 0.827, 0.119 and 
0.198), which suggested that there was no departure from a perfect fit. 
The stratified analysis is shown in Supplemental material, which in
dicates the performance of radiomics nomogram was not affected by 
patient age, gender, tumor location and CT system (Delong test p-values 
> 0.05) (Fig. S5), and therefore implies its generalization on various 
kinds of cases. The Kappa test showed good intra-/inter-reader agree
ment for our radiomics nomogram with values of 0.720 and 0.688, 
respectively. Furthermore, we split the whole data set into paired 
training (50 %) and test (50 %) sets 10 times, followed by the repeating 
construction and validation of the classification model. In this experi
ment, there was no significant difference found between the resulted 
AUCs which ranged from 0.847 to 0.910 in the holdout test sets. 

4. Discussion 

Our study demonstrated the potential use for CT-based radiomics 
signature to act as a reproducible imaging marker for an accurate dif
ferentiation of serosa invasion. In order to facilitate further research and 
develpment, we made the developed models open access in our website 
(www.radiomics.net.cn/platform.html). 

Most of the CT criteria for T staging of gastric cancer were based on a 
multilayered pattern of the gastric wall. The ability of CT to differentiate 
between the layers of the gastric wall is limited, especially when the 
tumor invades serosa. A previous study indicated that the CT diagnostic 
accuracy for serosa positive gastric cancer was about 77 % [9], which 
was a lower value than the test results (test set I: 80 %; test set II: 85 %) 
obtained in our study. 

This study applies not only traditional radiomics methods, but also 
incorporates features extracted from deep learning neural networks. The 
method of deep learning in the field of computer vision has become 
increasingly mature, providing a new opportunity for automated anal
ysis of medical images and assisting doctors in realizing high-accuracy 
intelligent diagnosis of diseases [26,27]. Most of them use DCNN 
models or other commonly used deep learning algorithms, or several 
merging methods for image classification detection. The use of deep 
learning methods can provide a lot of convenience for image 
classification. 

The limited sample sizes in medical image analysis studies could 
introduce bias in the results of feature selection, model building and 
model evaluation and therefore affect the performance and generaliz
ability of the developed systems [28,29]. In this study, we designed and 
conducted the strategies of multiple feature selection and 
cross-validation to construct the relative optimal predictive models 
based on our training set. Although the satisfactory accuracies were 
obtained on the two independent test sets, it should be noted that the 
power of ROC curve and calibration curve analyses would be improved 
if further larger multicenter datasets could be used validate the model. 

According to the literature [30,31], the growth, invasion and 
metastasis of gastric cancer mainly depend on angiogenesis and could be 
evaluated using the perfusion CT. Different from these previous re
searches, in which the radiologists measured the image characteristics 
(e.g., blood flow and blood volume) from perfusion CT and directly 
evaluated their correlation with other clinical markers, we extracted the 
features from the contrast-enhanced CT images and combined them with 
CT findings to develop a predictive model for serosa invasion. The 
contrast-enhanced CT could achieve a good visualization of the tumor 
vascularity and reveal enhancement heterogeneity. In the arterial phase, 
the mucosa at the lesion presented as a focal enhanced line. In the portal 

Fig. 5. Radiomics nomogram based on radiomics signatures and clinical characteristics.  
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venous phase, the markedly increased interstitial fibrous tissues reduced 
the flow-out speed of the contrast media, resulting in well-proportioned 
enhancement of the lesion. Thus, the arterial phase can reflect the blood 
supply and functional capillary density of gastric cancer and the portal 
venous phase may reflect more dysfunctional neo-vessels and represent 
the distribution of contrast media in interstitial spaces [32], which 
might account for different diagnosis performances between different 
phases. Advanced gastric cancer is characterized by gradual enhance
ment from the mucosa to the serosa. The enhancement peak is achieved 
in the delayed phase. If no enhancement is observed in the serosa in the 
delayed phase, it cannot be considered that the tumor has extramural 
infiltration even if the fat around the gastric wall is blurred or 

disappeared. Therefore, multiphase enhancement is beneficial to the 
identification of tumor wall infiltration. 

In the previous studies, most of the models had not been applied to 
the clinic. If the prediction performance of the model on the test set is 
better, it shows that it has the potential to be applied in clinical diag
nosis. If the model is even significant in the prospective data, it indicate 
clinical predictive efficacy. Blind to the postoperative pathological re
sults, we prospectively collected the test set II, and validated the per
formance of our models on it. 

There were some limitations of the study. First, we did not perform a 
3D image segmentation. In our study, ROIs of gastric cancers were 
drawn on the largest axial section and were drawn along the contour of 

Table 3 
Predictive performances of each model on the training and test sets.  

Models AIC 

Training set Test set I Test set II 

AUC (95 % 
CI) 

Acc (95 %CI) Sen Spe AUC (95 % 
CI) 

Acc (95 %CI) Sen Spe AUC (95 % 
CI) 

Acc (95 %CI) Sen Spe 

Radiomics 
nomogram 

288.7 0.90 
(0.86− 0.94) 

0.81 
(0.76− 0.86) 

0.80 0.84 0.87 
(0.82− 0.92) 

0.80 
(0.73− 0.85) 

0.73 0.85 0.90 
(0.85− 0.96) 

0.85 
(0.78− 0.90) 

0.75 0.93 

Clinical 
model 

388.1 0.79 
(0.73− 0.84) 

0.72 
(0.66− 0.77) 

0.74 0.69 0.80 
(0.73− 0.86) 

0.73 
(0.66− 0.79) 

0.63 0.81 0.78 
(0.70− 0.85) 

0.73 
(0.65− 0.80) 

0.62 0.81 

Phenotypic 
model 1 

392.6 0.78 
(0.72− 0.84) 

0.69 
(0.63− 0.75) 

0.66 0.75 0.76 
(0.68− 0.83) 

0.68 
(0.60− 0.74) 

0.63 0.71 0.80 
(0.72− 0.87) 

0.72 
(0.64− 0.79) 

0.67 0.77 

Phenotypic 
model 2 

364.4 0.82 
(0.77− 0.88) 

0.74 
(0.68− 0.79) 

0.71 0.80 0.84 
(0.78− 0.90) 

0.78 
(0.71− 0.84) 

0.76 0.80 0.88 
(0.82− 0.93) 

0.81 
(0.73− 0.87) 

0.65 0.93 

NOTE. Acc, accuracy; Sen, sensitivity; Spe, specificity. 

Fig. 6. ROC curves of the four predicted models on (a) the training set, (b) the test set I and (c) the test set II, and (d) calibration curve of the radiomics nomogram.  
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the tumor as visualized on each phase (arterial, portal venous, and 
delayed phase) of CT. The influence of 2D vs. 3D segmentation to the 
model should be further studied. Second, our method needed manually 
segmentation of the tumor, which was time consuming. The automated 
segmentation method, as well as the fully automated model, is valuable 
to be developed in the future. Third, all the patients were from a single 
center, the model may perform differently if multicenter datasets with 
different parameters are used. A much larger dataset from multiple 
centers, with the prognosis data ought to be investigated to validate the 
reproducibility of our radiomics model. 

In conclusion, we presented a CT-based deep learning radiomics 
model for discriminating serosa invasion of advanced gastric cancer, 
which is discriminative to yield good diagnostic accuracy. 
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[20] T. Jäger, D. Neureiter, R. Urbas, et al., Applicability of American joint committee 
on cancer and college of american pathologists regression grading system in rectal 
cancer, Dis. Colon Rectum 60 (8) (2017) 815–826, https://doi.org/10.1097/ 
DCR.0000000000000806. 

[21] T.U. Kim, S. Kim, J.W. Lee, et al., MDCT features in the differentiation of T4a 
gastric cancer from less-advanced gastric cancer: significance of the 
hyperattenuating serosa sign, Br. J. Radiol. 86 (1029) (2013) 20130290, https:// 
doi.org/10.1259/bjr.20130290. 

[22] A. Zwanenburg, S. Leger, M. Vallières, S. Löck, Results from the image biomarker 
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