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Background: Radiomics based on computed tomography (CT) images is potential in promoting 
individualized treatment of non-small cell lung cancer (NSCLC), however, its role in immunotherapy needs 
further exploration. The aim of this study was to develop a CT-based radiomics score to predict the efficacy 
of immune checkpoint inhibitor (ICI) monotherapy in patients with advanced NSCLC.
Methods: Two hundred and thirty-six ICI-treated patients were retrospectively included and divided into 
a training cohort (n=188) and testing cohort (n=48) at a ratio of 8 to 2. The efficacy outcomes of ICI were 
evaluated based on overall survival (OS) and progression-free survival (PFS). We designed a survival network 
and combined it with a Cox regression model to obtain patients’ OS risk score (OSRS) and PFS risk score 
(PFSRS).
Results: Based on OSRS and PFSRS, patients were divided into high- and low-risk groups in the training 
cohort and the test cohort with distinctly different [training cohort, log-rank P<0.001, hazard ratio (HR): 
4.14; test cohort, log-rank P=0.014, HR: 4.54] and PFS (training cohort, log-rank P<0.001, HR: 4.52; test 
cohort, log-rank P<0.001, HR: 6.64). Further joint evaluation of OSRS and PFSRS showed that both were 
significant in the Cox regression model (P<0.001), and multi-overall survival risk score (MOSRS) displayed 
more outstanding stratification capabilities than OSRS in both the training (P<0.001) and test cohorts 
(P=0.002). None of the clinical characteristics were significant in the Cox regression model, and the score 
that predicted the best immune response was not as good as the risk score from follow-up information in the 
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Introduction 

Immune checkpoint inhibitors (ICIs) targeting programmed 
cell death 1 (PD-1) and its ligand (PD-L1) have been 
shown to confer durable antitumor efficacy, dramatically 
revolutionizing the therapeutic paradigms of various types 
of malignancies, including advanced non-small cell lung 
cancer (NSCLC) (1-4). Despite this important breakthrough, 
an objective response to immunotherapy occurs in only 
approximately 20% of unselected patients with advanced 
NSCLC (5-8). Therefore, accurately identifying patients who 
potentially benefit from ICIs is of paramount importance for 
the treatment optimization of advanced NSCLC.

Previous studies have analyzed several predictive 
biomarkers of response to ICIs in advanced NSCLC, 
including tumor mutation burden (TMB) (9-11), PD-L1 
expression (12-14), tumor-infiltrating lymphocytes (15,16), 
and inflammatory cytokines (17). The PD-L1 expression 
represents the only biomarker in clinical practice capable of 
guide the decision in first line treatment NSCLC. However, 
the current standard for identifying PD-L1 expression 
mainly relies on biopsy, which cannot characterize the whole 
landscape of tumor microenvironment due to the small size 
of biopsy specimens, therefore, potentially leading to the 
limitation in diagnostic accuracy. In addition, several trials 
demonstrated that PD-L1 expression could not accurately 
recognize patients sensitive to immunotherapy, ICIs 
might benefit patients with negative PD-L1 expression, 
its predictive accuracy for immunotherapeutic efficacy was 
unsatisfactory (18,19). Thus, there is a significant unmet 
need for a robust and noninvasive biomarker to predict the 
efficacy of ICIs in patients with advanced NSCLC.

The use of radiomics for quantitative analysis of solid 
tumors has been recently proposed (20). This method 
explores the deep-level tumor imaging features that 

cannot be discovered by the human eye, constructing a 
corresponding auxiliary diagnostic model based on different 
clinical problems (21). Deep learning, as a new branch 
of radiomics, has also developed rapidly (22), playing an 
increasingly significant role in clinical application of various 
solid tumors, including gastric cancer (23), breast cancer 
(24,25), and NSCLC (26). The combination of medical 
imaging research with deep learning technology has led to 
further development in many clinical fields. The application 
range of this technology includes disease diagnosis (27), 
treatment selection (28), and prognosis prediction (29,30). 
In addition, a study has confirmed that there are significant 
differences in computed tomography (CT) images of 
patients in different ICI treatment cycles (31). 

Previous studies have usually relied on existing proven 
prognostic factors as the prediction target of deep learning 
to predict the prognosis of immunotherapy (32-35). In this 
study, we aimed to use CT images combined with deep 
learning to find a more accurate radiomic score construction 
method using multiple prognostic indicators for evaluating 
the clinical outcome of advanced NSCLC patients treated 
with ICIs. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
tlcr.amegroups.com/article/view/10.21037/tlcr-22-244/rc). 

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the ethics committee of Shanghai Pulmonary 
Hospital (L20-333-1). Informed consent was waived 
considering the retrospective nature of this study. Patients 
who received anti-PD-1/PD-L1 monotherapy for advanced 

performance of prognostic stratification.
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NSCLC and had undergone chest CT scans within  
2 weeks before immunotherapy at the Shanghai Pulmonary 
Hospital between January 2015 and December 2019 were 
retrospectively included. Patients were excluded if any one 
of the following criteria was met: poor quality of CT images, 
incomplete baseline data, mixed tumor histologic type, and 
lost to follow-up. The baseline characteristics, including 
gender, age, Eastern Cooperative Oncology Group 
performance-status score (ECOG PS), pathological stage, 
and tumor histologic type, were retrospectively collected. 
Follow-up information was acquired from outpatient 
records and telephone interviews. Response in general to 
immune checkpoint blockade was assessed according to the 
Response Evaluation Criteria in Solid Tumors (RECIST) 
version 1.1 (36). Progression-free survival (PFS) was 
calculated as the time from immunotherapy administration 
to tumor progression or death from any cause or last follow-
up. Overall survival (OS) was estimated as the time from 
tumor diagnosis until death or last follow-up.

The patients were divided into a modelling cohort 
(n=164), validation cohort (n=24), and testing cohort (n=48) 
using stratified randomization. The modelling cohort was 
used for deep network training, the validation cohort was 
used to optimize network parameters, and the test cohort 
was used to evaluate the network. Since both the modelling 
cohort and the validation cohort were used in the training 
phase of the network, we collectively refer to them as the 
training cohort (n=188). The construction, optimization, 
and evaluation of each network used the same modelling 
cohort, validation cohort, and test cohort.

CT image and tumor segmentation

Chest CT scans were performed using instruments by 
Siemens (Somatom Definition AS+, Biograph 64, Munich, 
Germany), Philips (Brilliance 40, iCT 256, Ingenuity 
Flex, MX 16-slice, Amsterdam, Netherlands), GE Medical 
System (Bright Speed, Boston, USA), and United Imaging 
(uCT 510, uCT 760, uCT S-160, Shanghai, China). All 
images were reconstructed and then imported into 3D 
Slicer (http://www.slicer.org) for segmentation.

The region of interest (ROI) was annotated by a 
bounding box including the entire tumor volume. Two 
radiologists (T.T.W and Y.Y) independently performed 
tumor segmentation in the lung window setting [mean, −450 
Hounsfield unit (HU); width, 1,500 HU], and interobserver 
disagreements were resolved by consulting a senior 
radiologist (X.W.S) with more than 10 years of experience. 

The segmented 3-dimensional (3D) tumor images were 
preprocessed before training the networks. The upper and 
lower bounds of HU values in CT images were set as 1,024 
and −1,024, respectively, and we used 3D tumor images for 
z-score normalization based on the dataset. In addition, we 
performed multi-view data augmentation in order to increase 
the number of samples and improve the generalization 
ability of the network (37). The data augmentation method is 
detailed in Appendix 1 & Figure S1.

Experimental design and main flow overview

In this study, we aimed to find prognosis evaluation 
differences when various prognostic indicators were 
combined by deep learning as prediction targets and also to 
construct a deep learning network for follow-up information 
to obtain accurate risks. Based on these goals, we collected 
2 types of prognosis-related information: optimal immune 
response [partial response (PR), stable disease (SD), 
progressive disease (PD)] and follow-up information. 

Our research consisted of 3 parts. The first was to build 
a survival network for follow-up information to obtain an 
OS risk and PFS risk for patients. Later, we combined OS 
risk and PFS risk to conduct more in-depth exploration 
of patient prognosis assessment to improve precision. 
Meanwhile, we constructed a classification network based 
on the optimal immune response to obtain the PR and PD 
probabilities of patients, and we compared the difference 
between the optimal immune response model and the 
prognostic information model in prognostic evaluation 
(Figure 1). The inputs of all networks were the CT images. 
At the end of the study, we exported the class activation 
maps of all risk scores to observe the differences in the areas 
of concern when predicting PFS and OS risks. 

Acquisition and verification of OS risk score (OSRS) and 
PFS risk score (PFSRS)

The survival network, which was different from previous 
studies (38,39), contained 2 modules: a convolutional 
module and classification module. The convolutional 
module was a dense-like network (the number of 
convolutional layers included in each dense block was 6, 
12, 12, and 6), and the main function was to extract deep 
learning features. The classification network was a fully 
connected network. A total of 508 deep learning features 
extracted by the convolutional module reached a hidden 
layer containing 256 nodes after passing through the input 
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layer. The classification network was designed to directly 
output a risk vector with 3 scores, with each score related 
to whether the patient had an endpoint in the time interval. 
The points of trisection in the time dimension of the sample 
with endpoint in the training cohort were selected as the 
cut-off points. The OS cut-off points in this study were 135 
days and 282 days, and the PFS cut-off points were 98 and 
213 days. Meanwhile, we designed different loss functions 
for patients with multiple goals and single goals in the risk 
vector. For patients with multiple goals, we defined the 

sample loss function as follows:
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For patients with single goals, we defined the sample loss 
as follows:
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Information about the survival network is detailed in 
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Figure 1 Experimental protocol workflow. The research consisted of 4 steps: the first was data collection and preprocessing. Afterwards, 
we simultaneously constructed PRS and PDS that could predict the patient’s optimal immune response and the patient’s OS risk vector and 
PFS risk vector through 3D tumor imaging. These scores were fitted using the Cox regression model, and OSRS and PFSRS with patient 
stratification ability was obtained. Finally, OSRS and PFSRS were combined to assess the OS of the patient. OS, overall survival; PFS, 
progression-free survival; OSRS, overall survival risk score; PFSRS, progression-free survival risk score; AUC, area under the curve; ECOG 
PS, Eastern Cooperative Oncology Group performance status; PDS, progressive disease score; PRS, partial response score.
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Appendix 2. After obtaining the risk vectors, we employed 
backward selection via the Cox regression model to fuse the 
risk vectors to acquire accurate patient risks. OSRS was the 
risk value obtained by using the fusion OS risk vector, and 
PFSRS was the risk value obtained by using the fusion PFS 
risk vector.

In the evaluation stage, we used the macro-accuracy that 
could better evaluate each category to assess the risk vector, 
and we mapped each patient’s risk vector to 3D coordinates 
to observe its spatial differences. For OSRS and PFSRS, 
we chose the Kaplan-Meier curve and log-rank test to 
evaluate the risk stratification ability of OSRS and PFSRS. 
Otherwise, concordance index (C-index) and hazard ratio 
(HR) were used as evaluation indicators.

Immune efficacy prediction in combination with OSRS 
and PFSRS

As PFS and OS are closely related, it is necessary to 
combine them for analysis. Therefore, we performed Cox 
regression analysis to merge PFSRS into OSRS to restore 
the original appearance of survival prognosis, and the final 
score was named Multi-OSRS (MOSRS). In addition, we 
displayed the distribution maps of OSRS, PFSRS, and 
MOSRS based on patient follow-up information. The 
class activation maps of PFSRS and OSRS were generated 
and the structural similarity between them was calculated. 
Finally, the similarity coefficient and all risk scores were 
analyzed by Spearman’s correlation to quantitatively analyze 
differences in the observation areas of risk scores when 
predicting PFS and OS.

To verify the ability of MOSRS to divide patients into 
high- and low-risk groups, we used the Kaplan-Meier curve, 
HR, C-index, and log-rank test for evaluation. Further, we 
used MOSRS to test subgroups of different tumor sizes (the 
3D maximum diameter of the tumor) and different tumor 
histologic type to evaluate the prognostic value of MOSRS.

Acquisition and verification of PR score (PRS) and PD 
score (PDS)

We constructed PRS and PDS to simultaneously predict 
the PR and PD of patients via a dual-task network. The 
advantage of multitask learning is the ability to process 
multiple tasks through 1 network to identify the expression 
of common features among network learning tasks, thereby 
improving the generalization ability of the results (40). The 
dual-task network in this study had similar components to 

the survival network, with both including a convolutional 
module and classification module. In the output layer, the 
network directly predicted the PR and PD of patients. The 
training process and parameters are shown in Appendix 3. 

When verifying the PRS and PDS, the receiver 
operating characteristic curve (ROC) was used to evaluate 
the performance of PRS and PDS, and area under the curve 
(AUC) was selected as indicator of quantitative evaluation. 
The best cut-off point was chosen by the Youden index. 
In addition, to comprehensively evaluate the predictive 
power of PRS and PDS, we included the thickness, 
voxel spacing, and tumor histologic type that might be 
potential influencing factors for subgroup analysis. We also 
performed the log-rank test to evaluate the ability of PRS 
and PDS to stratify patient risk.

Statistical analysis

Discrete and continuous baseline characteristics of patients 
were compared through Chi-square test and Mann-Whitney 
U test, respectively. For categorical variables output by 
the network, ROC and AUC were employed to evaluate 
PRS and PDS, and macro-accuracy was used to measure 
the performance of risk vectors. For survival risk, we chose 
Kaplan-Meier curve, log-rank test, C-index, and HR to 
evaluate the stratification ability of OSRS, PFSRS, and 
MOSRS. X-tile was used to select the best cut-off point (41).  
Otherwise, all analyses were performed in R (version 3.5.2; 
http://www.R-project.org) and Python (version 3.6.7; 
http://www.python.org/). A two-sided P value less than 0.05 
was considered a significant difference, an AUC more than 
0.75 was considered as a satisfactory predictive efficiency. 
The Python and R packages are summarized in Appendix 4.

Results

Clinicopathological characteristics

In order to assess the role of CT in predicting the efficacy 
of immunotherapy as accurately as possible, 236 patients 
who had received the first-line ICIs were retrospectively 
enrolled in this study. The clinical characteristics of the 
patients are summarized in Table 1.

The proportion of male patients in the dataset was larger 
(83%). The median age of all patients was 64 years, and the 
most common histologic type was adenocarcinoma (50%). 
For the clinical characteristics with incomplete data, stage 
IV (49%) accounted for the highest proportion of clinical 
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Table 1 Clinicopathological characteristics of the dataset

Characteristics Total (N=236)
Training cohort (N=188)

P value* Test cohort (N=48) P value**
Modelling cohort (N=164) Validation cohort (N=24)

Gender 0.84 0.56

Female 40 (0.17) 26 (0.16) 4 (0.17) 10 (0.21)

Male 196 (0.83) 138 (0.84) 20 (0.83) 38 (0.79)

Median age [range] (years) 64 [57–70] 64 [57–70] 64 [61–67] 0.34 64 [59–69] 0.34

Smoking status 0.66 0.75

Never smoked 45 (0.19) 33 (0.20) 3 (0.12) 9 (0.19)

Current or former smoker 83 (0.35) 59 (0.36) 9 (0.38) 15 (0.31)

Unknown 108 (0.46) 72 (0.44) 12 (0.50) 24 (0.50)

ECOG performance-status score 0.02 0.69

0 11 (0.05) 9 (0.05) 0 (0.0) 2 (0.04)

1 112 (0.47) 81 (0.49) 9 (0.38) 22 (0.46)

2 6 (0.03) 3 (0.02) 3 (0.12) 0 (0.0)

Unknown 107 (0.45) 71 (0.43) 12 (0.50) 24 (0.50)

Clinical stage 0.80 0.67

III 13 (0.06) 10 (0.06) 1 (0.04) 2 (0.04)

IV 116 (0.49) 83 (0.51) 11 (0.46) 22 (0.46)

Unknown 107 (0.45) 71 (0.43) 12 (0.50) 24 (0.50)

Tumor histologic type 0.35 0.69

Squamous cell carcinoma 71 (0.30) 51 (0.31) 4 (0.17) 16 (0.33)

Adenocarcinoma 119 (0.50) 80 (0.49) 14 (0.58) 25 (0.52)

Others 46 (0.19) 33 (0.20) 6 (0.25) 7 (0.15)

Tumor mutation 0.68 0.50

No mutation 104 (0.44) 77 (0.47) 9 (0.38) 18 (0.38)

Mutation 25 (0.11) 16 (0.10) 3 (0.12) 6 (0.12)

Unknown 107 (0.45) 71 (0.43) 12 (0.50) 24 (0.50)

Optimal immune response 0.96 0.93

Progressive disease 62 (0.26) 44 (0.27) 6 (0.25) 12 (0.25)

Stable disease 119 (0.50) 83 (0.51) 12 (0.50) 24 (0.50)

Partial response 55 (0.23) 37 (0.23) 6 (0.25) 12 (0.25)

Progression-free survival outcome 0.84 0.15

No event 94 (0.40) 61 (0.37) 9 (0.38) 24 (0.50)

Event 142 (0.60) 103 (0.63) 15 (0.62) 24 (0.50)

Progression-free survival time (days)

No event 352.48±222.19 353.87±216.33 411.67±259.73 0.31 326.75±217.10 0.32

Table 1 (continued)
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stage, the majority of patients were classified as current or 
former smokers (35%), and the number of patients with 
oncogenic alterations was lower (11%) than those without 
alterations. With respect to immune response, the number 
of patients with disease progression (26%) was slightly more 
than that of patients with PR (23%). In terms of prognostic 
information, progress in PFS was found in 142 (60%) 
patients and 62 (26%) patients had an endpoint event in OS. 
The median OS and PFS of all patients were 296.5 (range, 
16–1,128) days and 181 (range, 15–1,010) days, respectively. 

Risk assessment of OSRS and PFSRS

We trained survival networks for OS and PFS to obtain 
risk vectors of OS and PFS. The macro-accuracy of the OS 
risk vector and PFS risk vector were 77.4% and 81.6% in 
the training cohort, respectively, and 83.3% and 77.5% in 
the test cohort, respectively, indicating good multicategory 
prediction ability. Meanwhile, we constructed a 3D space 
to visualize the risk vectors of patients who had an endpoint 
event (Figure 2A,2B). Whether predicting PFS or OS, we 
observed that all patients were aggregated into 3 clusters 
with spatial differences in the 3D space. Since the event 
time in some patients was near the cut-off time, there were 
also some intertwined samples in the figure.

To develop the OSRS, we used an OS risk vector which 
was composed of OS score 1, OS score 2, and OS score 3 
for backward selection via the Cox regression model. In the 
end, only OS score 3 (multivariate P<0.001) was retained 

and formed into OSRS. The results showed that OSRS for 
patients in the training cohort [cut-off point =0.64; HR: 
4.14, 95% confidence interval (CI): 2.40–7.15; log-rank 
P<0.001; Figure 2C] and test cohort (HR: 4.54, 95% CI: 
1.21–16.94; log-rank P=0.014; Figure 2C) had excellent risk 
stratification ability, with the C-index in the training cohort 
and test cohort 0.73 (95% CI: 0.66–0.80) and 0.75 (95% CI: 
0.59–0.90), respectively. To develop the PFSRS, we used a 
PFS risk vector which was composed of PFS score 1, PFS 
score 2, and PFS score 3 for backward selection via the Cox 
regression model. PFS score 2 (multivariate P=0.002) and 
PFS score 3 (multivariate P<0.001) were singled out for the 
PFSRS. The results showed that PFSRS could significantly 
divide patients into high-risk and low-risk groups in both 
the training cohort (cut-off point =0.51; HR: 4.52, 95% 
CI: 3.04–6.70; log-rank P<0.001; Figure 2D) and test 
cohort (HR: 6.64, 95% CI: 2.89–15.29; log-rank P<0.001; 
Figure 2D). The C-index of the training cohort and test 
cohort were 0.72 (95% CI: 0.68–0.77) and 0.70 (95% CI: 
0.59–0.81), respectively. Clinical characteristics based on 
OSRS and PFSRS grouping are displayed in Tables S1,S2, 
respectively.

To explore the reasons why score 3 was more easily 
selected in OS and PFS risk vectors, we performed 
statistical analysis on samples that contributed to different 
scores (Figure 2E,2F). We found that for the third category, 
the nonclinical endpoint sample was the largest no matter 
which risk vector was trained. These samples included the 
patients in which the endpoint event occurred and also 

Table 1 (continued)

Characteristics Total (N=236)
Training cohort (N=188)

P value* Test cohort (N=48) P value**
Modelling cohort (N=164) Validation cohort (N=24)

Overall survival outcome 0.40 0.34

No event 174 (0.74) 120 (0.73) 15 (0.62) 39 (0.81)

Event 62 (0.26) 44 (0.27) 9 (0.38) 9 (0.19)

Overall survival time (days)

No event 374.11±232.58 379.69±237.26 429.33±254.56 0.27 249.43±198.05 0.19

Event 221.94±184.21 233.75±201.12 208.44±133.77 0.50 177.67± 123.68 0.28

Voxel spacing (mm) 0.75±0.09 0.75±0.09 0.75±0.09 0.37 0.76±0.09 0.37

Thickness (mm) 0.82±0.24 0.82±0.26 0.82±0.24 0.20 0.83±0.22 0.20

Categorical data are shown as numbers (proportion) and continuous data as mean ± SD or median [range]. *, P value is the test result 
of the training cohort and the validation cohort; **, P value is the test result of the training cohort and the test cohort. ECOG, Eastern 
Cooperative Oncology Group.
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Figure 2 Prognostic value of OSRS and PFSRS. (A,B) The visualization results of OS risk vector and PFS risk vector, respectively. The risk 
vector contains three dimensions. The star symbol represents the position of each patient in the risk vector space, red, green, and blue stars 
represent patients with events in interval 1, interval 2, and interval 3 of the follow-up time, respectively, the interval is calculated from the 
time of OS and PFS, and its projection on the three-dimensional cross-section is represented by a circle symbol. (C,D) The KM curves of 
OSRS and PFSRS, respectively. (E,F) Bar graphs of patients in different time intervals of OS and PFS, respectively. In the subgraphs, from 
left to right are the training cohort and the test cohort. OS, overall survival; PFS, progression-free survival; OSRS, overall survival risk score; 
PFSRS, progression-free survival risk score; KM, Kaplan-Meier.

the patients in which the event did not appear in the time 
period. This was in line with the principle of our survival 
network training.

Multivariable deep learning signatures for prediction of 
patient outcomes

Although OSRS and PFSRS had significant stratification 
capabilities, they did not make full use of the prognostic 

information of patients when used alone. We integrated 
OSRS and PFSRS to predict the OS. Both OSRS 
(multivariate P<0.001) and PFSRS (multivariate P<0.001) 
were significant in the Cox regression model. The 
MOSRS obtained by the fusion of OSRS and PFSRS could 
significantly stratify patients in the training cohort (cut-
off point =0.76; HR: 8.44, 95% CI: 4.62–15.44; C-index: 
0.77, 95% CI: 0.71–0.83; log-rank P<0.001; Figure 3A) 
and test cohort (HR: 6.79, 95% CI: 1.69–27.28; C-index: 
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0.79, 95% CI: 0.63–0.94; log-rank P<0.001; Figure 3A). We 
also combined OSRS and PFSRS to analyse PFS, and the 
results showed that OSRS was not significant in the model 
(multivariate P=0.848). Clinical characteristics based on 
MOSRS grouping are displayed in Table S3.

Then, we combined prognostic information, OSRS, 
PFSRS, and MOSRS to draw Figure 3B, in order to show 
the better-quality details of MOSRS compared to OSRS. 
Figure 3B is divided into upper and lower modules. The 
abscissas of the two modules represent different patients, 

and all patients are sorted in order of MOSRS, from small 
to large. The upper module reflects the survival of all 
patients, and the ordinate represents the follow-up time 
(the upper limit set in the figure is 1,000 days). The lower 
module of the figure is a bar graph of each score and a line 
graph of the number of sorting errors which is based on the 
C-index. We observed that with an increase in MOSRS, 
the density of events per unit time gradually increased, 
and the time of death was gradually reduced. In addition, 
1 patient progressed and died only 16 days after treatment, 
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and his MOSRS was obviously higher than the remaining 
high-risk patients. Further, we found that that OSRS was 
uneven in the MOSRS-based arrangement, and PFSRS 
had a potential corrective effect, especially for the 161th 
patient. This patient had a lower OSRS than others but a 
higher PFSRS. The line graph (Figure 3C) of the wrong 
sorting shows that the number of incorrectly sorted patients 
decreased from 153 to 44 (the red line represents OSRS and 
the green line represents MOSRS). A similar situation also 
occurred in patients with higher MOSRS. We observed that 
some patients had significantly reduced sequencing errors. 
Therefore, when analysing the efficacy of ICI treatment, 
judgments and studies should be made in conjunction with 
variables related to patient progress and survival.

In addition, we performed univariate analysis of clinical 
characteristics and multivariate analysis combined with 
MOSRS, and all scores were normalized to nonnegative 
numbers via a nomogram. (Figure 4A,4B). The results 

showed that in the univariate analysis, only ECOG PS 
was significantly related to the patient’s OS, and no 
characteristics were significant in the multivariate analysis 
with MOSRS. Further, we tested the stratified analysis of 
MOSRS in different tumor histologic type (squamous cell 
carcinoma and adenocarcinoma) and different tumor size 
(3D maximum diameter). The results showed that MOSRS 
showed excellent stratification effects in all subgroups (all 
log-rank P values were less than 0.001; Figure 4C,4D).

Using PRS and PDS to predict immunotherapy response

We obtained the PRS and PDS of the patients by training 
the dual-task network. The results of the dual-task network 
are displayed in Figure S2. PRS could significantly predict 
the optimal immune efficacy, whether it was verified in the 
training cohort (cut-off point: 0.36; AUC: 0.81, 95% CI: 
0.74–0.87) or the test cohort (AUC: 0.78, 95% CI: 0.63–
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Figure 4 Subgroup analysis and multivariable analysis of MOSRS. (A) Single variable analysis of clinical features and multivariate analysis 
of MOSRS and clinical features. (B) The nomogram used to standardize OSRS and PFSRS. (C) KM curve of MOSRS in squamous cell 
carcinoma and adenocarcinoma subgroups. (D) KM curve of MOSRS in larger tumor and smaller tumor subgroups. MOSRS, multi-overall 
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progression-free survival risk score; KM, Kaplan-Meier.
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0.91). Compared with PRS, PDS also showed excellent 
predictive performance, which was a good indicator of 
whether the patient was progressing in both the training 
cohort (cut-off point: 0.55; AUC: 0.78, 95% CI: 0.70–0.85) 
and the test cohort (AUC: 0.78, 95% CI: 0.65–0.91). 
Meanwhile, the results of 2 scores at different tumor 
histologic type cohorts, thicknesses cohorts, and voxel 
spacing cohorts indicated that these factors would not affect 
the score performance. 

We also attempted to stratify patient risk using PRS and 
PDS. The results showed that PRS could not significantly 
stratify the risk of patients for OS (log-rank P=0.441), even 
if it could distinguish whether the patient was PR. However, 
PDS differed from PR as it could classify patients well 
and also stratify patients with high and low risks for PFS 
(log-rank P<0.001). To further explore the association of 
different prognostic indicators, we conducted a multivariable 
analysis of these scores. PRS was significant when analysed 
with OSRS (log-rank P=0.045), but it was not significant 
when combined with MOSRS (log-rank P=0.082). PDS was 
not significant in the models combined with PFSRS (log-
rank P=0.738) and OSRS (log-rank P=0.170). The results 
showed that there was potential collinearity among PRS, 
PDS, and PFSRS, which may reflect the tumor’s response 
to early immunotherapy. In addition, the optimal immune 
response may be affected by the follow-up time dimension, 
and the lack of a fixed time may have introduced image 
differences. Therefore, modelling with follow-up time and 
endpoint may be more accurate in prognosis assessment.

Visual analysis

The development process of MOSRS is summarized in 
Figure 5. We selected the dual-task network, OS survival 
network, and PFS survival network for visualization by 
gradient-weighted class activation mapping (Grad-Cam) (42).

We selected 4 patients with representative prognostic 
information and displayed the results of the 3 models on the 
patient unit. We found that regardless of whether we used 
optimal immune response or prognostic information as our 
deep learning training goals, the key areas of the 3 networks 
were the tumor microenvironment with certain similarities. 
This result was consistent with our previous research 
conclusions (33). Further, the results of the quantitative 
evaluation showed that the structural similarity of the regions 
concerned with OSRS and PFSRS showed a significant 
negative correlation with the 3 risk scores (Figure 6). This 
was a very interesting finding and characterized the greater 

the risk, the smaller the similarity of the observation area. In 
other words, in the mechanism of immune prognosis, there 
are many differences in the factors that affect OS and PFS 
which bear resemblance to the corrective effect of PFSRS 
on OSRS in high-risk patients. In short, these factors are 
worth exploring in future research.

Discussion

As immunotherapy plays an increasingly crucial role in 
the field of cancer treatment, CT image analysis based on 
deep learning technique can screen out patients who will 
benefit from immunotherapy (32-35). In our study, 236 
patients who received ICI treatment were divided into a 
modelling cohort (n=164), validation cohort (n=24), and test 
cohort (n=48), and their 3D tumor images were extracted 
by manual segmentation. We first used patient follow-
up information to directly construct a survival network 
for modelling and obtain the OS risk vector (macro-
accuracy of training cohort: 77.4%, macro-accuracy of 
test cohort: 83.3%) and PFS risk vector (macro-accuracy 
of training cohort: 81.6%, macro-accuracy of test cohort: 
77.5%) that could classify patient endpoint time. These 
risk vectors were fused through the Cox regression model 
to get OSRS (training cohort log-rank P<0.001; test cohort 
log-rank, P=0.014) and PFSRS (training cohort log-rank 
P<0.001; test cohort log-rank P<0.001) with significant 
risk stratification performance. In the meantime, we used 
OSRS combined with PFSRS to optimize patient risk 
and obtain MOSRS. MOSRS demonstrated superiority 
to OSRS in both the training (log-rank P<0.001) and test 
(log-rank P=0.002) cohorts. Finally, we constructed a dual-
task network with PR and PD which showed significant 
risk stratification ability in the pre-experiment to obtain 
PRS and PDS capable of predicting the patient's optimal 
immune efficacy. Both PRS and PDS showed excellent 
performance in predicting the optimal immune response 
in patients. However, when performing risk stratification, 
PRS could not significantly stratify patients in OS (log-rank 
P=0.441), while PDS could significantly stratify both (log-
rank P<0.001).

PFS and OS follow-up information potentially contains 
the short-term and long-term response of tumors to 
immunotherapy. We innovatively combined OSRS and 
PFSRS to obtain MOSRS in order to make full use of 
patient prognosis information. MOSRS was better than 
OSRS in C-index, log-rank test, and other indicators. 
Based on these results, we speculated that the mechanism of 
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Figure 5 Visualization analysis of PRS, OSRS, and PFSRS. Class activation maps of 4 patients in 3 scores. The 3 scores are PRS (obtained 
from the dual-task network), OSRS (obtained from the OS survival network), and PFSRS (obtained from the PFS survival network). PRS, 
partial response score; OSRS, overall survival risk score; PFSRS, progression-free survival risk score; IR, immunotherapy response; SD, 
stable disease; PFS, progression-free survival; OS, overall survival; PR, partial response; MOSRS, multi-overall survival risk score.

immunotherapy was complicated, and the early response of 
tumors to immunotherapy was crucial in predicting patient 
OS. In addition, we used bar graphs and line graphs to 
display the MOSRS, PFSRS, and MOSRS of each patient. 
The bar graph showed that the MOSRS of the patient with 
the shortest survival time (16 days) was obviously greater 
than that of other high-risk patients, while the line graph 
showed that the ability of PFSRS to correct MOSRS was 
mainly reflected in the middle-high-risk patients.

Mounting evidence suggests the role of radiomics in the 
evaluation of immune response of patients, illustrating its 
importance in predicting the efficacy of immunotherapy. 
A previous study has employed deep learning technology 
combined with prognostic factors to indirectly predict 
immune response (32). Clinically, the validation of stable, 

accurate, and more targeted prediction methods represent, 
nowadays, an unmet need. CT, which provides easy-to-
obtain and noninvasive medical data, combined with deep 
learning technology is one of the better choices to fill this 
demand.

To the best of our knowledge, this is the first study 
to directly build a bridge between deep learning and 
prognostic information. In other words, MOSRS does 
not rely on any factors with predictive performance. In 
the preliminary experiment, we used a survival network to 
directly train the network and did not obtain acceptable 
results in either the training cohort (C-index =0.60) or test 
cohort (C-index =0.59). The loss of the network declined 
but not in exchange for an improvement of C-index. We 
speculated that the underlying reason for this was that the 
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Figure 6 Correlation analysis results of structural similarity and all risk scores. We obtained the structural similarity through the class 
activation diagram of PFSRS and OSRS and calculated the correlation with PFSRS, OSRS, and MOSRS. (A-C) The multivariate correlation 
diagrams of structure similarity and PFSRS, OSRS, and MOSRS, respectively. SSIM, structural similarity; PFSRS, progression-free survival 
risk score; OSRS, overall survival risk score; MOSRS, multi-overall survival risk score.

total number of patients in the study of immune efficacy 
was small, and there were fewer patients with endpoints.

In addition, in the multivariate analysis of clinical 
characteristics, we found that no clinical variables were 
significant using MOSRS. Further, we used TMB 
radiomic biomarker (TMBRB) with TMB classification 
and prognostic stratification capabilities from our previous 
study to compare with MOSRS (33). TMBRB (cut-off 
point =0.61; log-rank P=0.023) showed a stratification effect 
lower than that of MOSRS (log-rank P<0.001), and the 
multivariable P value of TMBRB was 0.73. These results 
are sufficient to prove the powerful potential of MOSRS as 
an independent prognostic factor.

In order to prove performance reliability of the 
method, we selected 4 patients with distinctive prognostic 
information and output the areas deemed important by 
the network through the visualization method. Although 
we selected different types of prognostic information as 
the target of our network training, they all had a similar 
region. Regarding the visualization results, we found that 
whether a dual-task network or survival network was used, 
the tumor microenvironment played an irreplaceable role 
in predicting tumor progression and patient OS, which 
was consistent with the conclusions of previous studies 
(32-34). Considering that the abundance of CD8 cells was 
related to immune efficacy, Sun et al. constructed a radiomic 
signature from CT images of 135 patients in the MOSCATO  
dataset (34). Three of the 8 features extracted to construct the 
signature were from the tumor peripheral, and this signature 
could better assess the patient’s immunophenotype and OS. 

Trebeschi et al. also used CT combined with radiomics to 
develop a radiomic biomarker at the level of the lesion (35).  
They found that this biomarker had good predictive ability 
and was also related to cell cycle progression and mitosis. 
In addition, the irregular blood vessels in the tumor 
microenvironment could lead to uneven tumor growth 
patterns, which in turn hinders the penetration of T cells (43). 

We found that the OSRS and PFSRS regions had 
differences in high-risk patients, and the structural 
similarity was negatively correlated with all risk scores. 
These results indicated that CT images, which provide the 
macroscopic characterization of multifactorial effects of 
human immunity, showed that there were different factors 
affecting immune-related PFS and OS. This also explained 
why PFSRS had a strong corrective effect on OSRS for 
high-risk patients when counting the number of incorrect 
rankings.

Our research had several limitations that should be 
acknowledged. First, our research involved a single-center 
retrospective collection of small sample size of Chinese 
patients. There may have been potential deviations in the 
survival distribution of patients, and larger multiethnic 
samples are needed. From the perspective of the loss 
function, we increased the constraints on sample scores 
with endpoints and only constrained the scores of negative 
classes for samples without endpoints. Therefore, room 
for improvement in the precision of the network remains. 
However, this this survival network had great value for 
predicting the efficacy of immunotherapy. In subsequent 
studies, we will increase the number of patients and 
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integrate more ethnic groups with prospective experiments 
for verification. For the survival network, we will optimize 
the selection of the time cutoff point and the loss function 
to obtain a more accurate survival network for predicting 
immune efficacy.

Our research has proven that CT image analysis 
combined with deep learning technology may provide an 
accurate, noninvasive, and reliable method for evaluating 
patient response to immunotherapy. Although further 
investigation of the relationship between immune efficacy 
and tumor biology is needed, we have found a way to study 
this matter in depth. Once verification with a larger dataset 
is provided, the method can be applied clinically.

Conclusions

In conclusion, our research has shown that deep learning 
can play an important role in predicting the immune 
efficacy of patients, and the scores obtained by CT images 
combined with deep learning technology can be effectively 
correlated with the clinical endpoints of patients treated 
with ICIs.
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