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Abstract 

Purpose: To estimate the prognostic value of deep learning (DL) magnetic resonance 

(MR)-based radiomics for stage T3N1M0 nasopharyngeal carcinoma (NPC) patients 

receiving induction chemotherapy (ICT) prior to concurrent chemoradiotherapy 

(CCRT). 

Methods: A total of 638 stage T3N1M0 NPC patients (training cohort: n = 447; test 

cohort: n = 191) were enrolled and underwent MRI scans before receiving ICT+CCRT. 

From the pretreatment MR images, DL-based radiomic signatures were developed to 

predict disease-free survival (DFS) in an end-to-end way. Incorporating independent 

clinical prognostic parameters and radiomic signatures, a radiomic nomogram was built 

through multivariable Cox proportional hazards method. The discriminative 

performance of the radiomic nomogram was assessed using the concordance index (C-

index) and the Kaplan-Meier estimator. 

Results: Three DL-based radiomic signatures were significantly correlated with DFS 

in the training (C-index: 0.695-0.731, all p < 0.001) and test (C-index: 0.706-0.755, all 

p < 0.001) cohorts. Integrating radiomic signatures with clinical factors significantly 

improved the predictive value compared to the clinical model in the training (C-index: 

0.771 vs. 0.640, p < 0.001) and test (C-index: 0.788 vs. 0.625, p = 0.001) cohorts. 

Furthermore, risk stratification using the radiomic nomogram demonstrated that the 

high-risk group exhibited short-lived DFS compared to the low-risk group in the 

training cohort (hazard ratio [HR]: 6.12, p < 0.001), which was validated in the test 

cohort (HR: 6.90, p < 0.001). 

Conclusions: Our DL-based radiomic nomogram may serve as a noninvasive and 

useful tool for pretreatment prognostic prediction and risk stratification in stage 

T3N1M0 NPC.  
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Introduction 

Nasopharyngeal carcinoma (NPC) has an unbalanced geographical distribution, 

with the highest incidence reported in Southeast Asia [1]. There were 129,000 new 

cases of NPC in 2018 [2] and approximately 70% of them were locoregionally 

advanced at diagnosis [3]. For patients with locoregionally advanced NPC (LANPC), 

concurrent chemoradiotherapy (CCRT) with or without induction chemotherapy (ICT) 

is recommended by the National Comprehensive Cancer Network guidelines [4]. 

The TNM staging system is now widely used for risk stratification and treatment 

decision in NPC. But it is noteworthy that LANPC patients with same TNM stage and 

similar treatment still have large variations in clinical outcomes, with 30%~40% of 

them eventually developing distant metastasis [5]. Therefore, there is a need for 

development of individualized methods to predict prognosis of LANPC patients. 

Great efforts have been made to search for prognostic biomarkers for LANPC, such 

as microRNAs [6], mRNAs [7] and PD-1/PD-L1 expression [8]. However，they require 

invasive biopsy and specialized equipment for molecular analysis, thus causing high 

cost and limiting its routine use [9, 10]. Obviously, a convenient and low-cost approach 

will be of great value. 

Radiomics has recently emerged as a promising field in oncology, which assumes 

that medical imaging can characterize information of the primary tumor, such as 

genetics, pathology and prognosis [11, 12]. Via transferring medical images into high-

dimension quantitative data, it can offer a noninvasive, effective and reliable method to 

aid clinical diagnosis, staging, treatment planning, and response assessment [13-15]. 

The rise of deep learning (DL), especially modern deep convolutional neural networks 

(DCNNs), enables radiomics to extract correlative quantitative representation of tumor 

phenotype in a fully automated and end-to-end way [16]. Past studies have suggested 

its potential medical application in a variety of cancers [17-19]. 

Based on above, we collected multi-parameter magnetic resonance (MR) images 

and clinical data of NPC before treatment to construct and validate a DL-based radiomic 

model for exploring whether radiomics could predict prognosis of stage T3N1M0 NPC 
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patients treated with ICT+CCRT, which is the largest subgroup (> 30%) of LANPC.  

Methods and Materials 

Patient data 

From an NPC-specific big-data intelligence platform at the Sun Yat-sen University 

Cancer Center (SYSUCC), we reviewed and screened eligible patients diagnosed at our 

center between January 2010 and March 2016. A detailed description of this database 

is presented in Appendix A. 

The inclusion criteria were as follows: (i) patients who had diagnosed T3N1M0 

disease; (ii) treated by ICT+CCRT; (iii) underwent pretreatment MRI scans; (iv) had 

complete clinical data, including age, sex, history of drinking and smoking, follow-up 

and pretreatment hematological examination results; (v) did not have other 

malignancies; and (vi) received intensity-modulated radiotherapy. The exclusion 

criteria included: (i) history of anticancer treatment before baseline MRI scans, such as 

radiotherapy, chemotherapy, immunotherapy and surgery, etc.; (ii) had artifacts, blurs, 

faults, and disordered slices in the MR image. This retrospective study of anonymous 

data was approved by our institution’s ethical review board and the requirement for 

informed consent was waived. 

All clinical data were gathered from the records of the institution’s Picture 

Archiving and Communication System (PACS, Carestream). Epstein-Barr Virus DNA 

(EBV-DNA) concentration was measured by real-time quantitative polymerase chain 

reaction assay [20]. The AJCC-TNM Staging System Manual (8th Edition, 2017) was 

used to perform tumor staging. 

Treatment, follow-up and clinical endpoint 

All patients received ICT+CCRT. Intensity-modulated radiotherapy lasted for 6 to 

7 weeks with 5 daily fractions per week. The prescribed radiation doses were 66 to 72 

Gy (2.12 to 2.27 Gy per fraction) for the primary tumor and 64 to 70 Gy (30 to 33 Gy 

per fraction) for the involved lymph nodes. ICT consisted of every 3-week cisplatin-

based regimens for 2 to 4 cycles while CCRT consisted of weekly cisplatin 40 mg/m2 

for 5~7 cycles or triweekly cisplatin 80 mg/m2 for 2~3 cycles during radiotherapy. 
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Details of the treatment have been reported before [21]. In the first 2 years of follow-

up, patients were examined by routine imaging methods every 3 months, every 6 

months from years 3-5, and annually thereafter. Follow-up duration was time from 

initial diagnosis to last visit or death. All local and regional recurrences were eventually 

confirmed by pathology. Distant metastasis was mainly diagnosed by the means of 

imaging examinations such as MRI or PET/CT. Disease-free survival (DFS) was set as 

the primary endpoint for earlier individual treatment while locoregional relapse-free 

survival, distant metastasis-free survival, and overall survival set as the secondary 

endpoints. The definitions of all clinical endpoints are consistent with Peng et al [19]. 

MR imaging protocol and tumor segmentation 

Multi-parametric MRI scans were performed on each patient within 2 weeks before 

any anti-tumor therapy, which included sequential non-contrast enhanced T1-weighted 

(axial, coronal, and sagittal planes) and T2-weighted (axial plane) images, and contrast 

enhanced T1-weighted images (axial, coronal, and sagittal planes). The MR protocols 

(scanner version, magnetic field strength, etc.) are depicted at length in Appendix B. 

All MR images extracted from the PACS were loaded into 3.8.0 version of ITK-SNAP 

software and then manually segmented. The primary tumor on the basilar region was 

contoured as the region of interest (ROI) on each slice of the three axial MR images. 

Coronal and sagittal MR images were only used in the need of guiding segmentation of 

the ROIs in cross-sectional plane. Therefore, every patient in this study had three ROIs. 

A junior radiologist (H.P.) with 6 years of clinical MR image-reading experience 

performed all image segmentations and resolved any uncertainty through consultation 

with another senior radiologist (L.L.T.). 

Deep learning-based radiomic signature building 

Conventional handcrafted features strongly rely on precise ROIs with good 

intra/inter-reader agreement, which is difficult to be satisfied and limits its application 

in routine clinical practice [11]. Therefore, we adopted a DCNN (SE-ResNeXt [22]) to 

end-to-end quantify the tumor phenotype for predicting DFS using multiple instance 

learning [23], which only required the approximate central location of ROI. SE-
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ResNeXt uses ResNeXt [24] as the backbone architecture and can adaptively retune 

channel-wise activation responses by explicitly modelling interrelation between 

channels, which have successfully improved significantly performance of existing 

state-of-the-art convolutional neural networks. In order to train SE-ResNeXt end-to-

end, Cox partial log likelihood [25] was used as the loss function to guide weight update. 

Before training the survival model, it was pretrained on a 3-year DFS classification task 

to obtain good initial weights. In addition, augmentation techniques were employed to 

prevent overfitting. Before the model construction, MR images were interpolated and 

normalized to compensate for scanner-dependent variability in image intensity [26]. 

Detailed image processing, multiple instance learning, and the architecture and 

implementation of SE-ResNeXt are described in the Supplementary Methods (see 

Appendix C). All operations, network architecture, and parameters were the same for 

each sequence of MR images. Therefore, we built three DL-based radiomic signatures 

(the model outputs that predicted hazard of DFS) to reflect the phenotypic 

characteristics of the primary tumor from three sequences of MR images: the 

DL_T1_sig, DL_T2_sig and DL_T1C_sig. 

Prognostic verification of DL-based radiomic signatures 

The predictive performance of each radiomic signature for DFS was firstly 

assessed in the training cohort and then verified in the test cohort. To compare 

prognostic performance between DL-based radiomic signatures and routine clinical 

parameters, a clinical model (Modelclinic) was built based on independent clinical 

prognostic factors using multivariable Cox proportional hazards (CPH) method. 

Creation and performance of an individualized radiomic nomogram 

The association between the clinical risk parameters and DFS of NPCs was firstly 

analyzed using univariate CPH method in the training cohort. Then, a multivariable 

CPH model (Modelclinic+dl) was used to identify independent predictors among clinical 

factors and DL-based radiomic signatures after adjustment for various covariates. 

Finally, Modelclinic+dl was visualized into a radiomic nomogram for helping clinicians 

to get conveniently individualized DFS estimation. The quality of Modelclinic+dl was 
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measured quantitatively using hazard ratio (HR) and Harrell's concordance index (C-

index). In addition, risk stratification using the radiomic nomogram was conducted, 

where a specific threshold was identified in the training cohort and locked during the 

test phase. 

Verification of the radiomic nomogram 

The agreement between the observed actual DFS rate and the nomogram-predicted 

DFS rate was evaluated using calibration curves. Time-dependent receiver operating 

characteristic (TD-ROC) analysis [27], which could accommodate censored data, was 

adopted to assess the predictive power of Modelclinic+dl, and to compare Modelclinic+dl 

with DL-based radiomic signatures and Modelclinic. 

Statistical analysis 

Kaplan-Meier curves were drawn for DFS, where a month is defined as 30 days. 

All HRs and C-indices were reported with 95% confidence intervals (CIs) and 

corresponding p-values. The p-values of HRs were tested using the log-rank test; the p-

value of a C-index was tested using the Z-test and measures the significance of the 

difference between the value of C-index and 0.5; the p-value for comparing two 

different C-indices were tested using the paired Student t-test based on the assumption 

of normality for the natural logarithm of the concordance index [28]. In the 

multivariable CPH method, backward stepwise selection was applied with Akaike’s 

information as the optimization criterion. Note that, all models except radiomic 

signatures were established using the multivariable CPH method. 

SE-ResNeXt was implemented with 3.6.5 version of Python based on the open-

source deep learning library Tensorflow (version: 1.10.0; https://www.tensorflow.org). 

Image processing algorithms were conducted in MATLAB R2017a (MathWorks, 

Natick, MA, USA) while statistical analysis with 3.6.1 version of R software. The open-

source PyRadiomics package (https://pypi.org/project/pyradiomics/) was used to 

extract handcrafted radiomic features from the segmented tumor volume for a 

comparison with DL-based radiomic signatures (Appendix C). A two-sided p-value < 

0.05 indicated that a comparison reaches a statistically significant difference. A detailed 
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description of statistical methods was shown in the Supplementary Methods (Appendix 

C). Figure 1 shows the radiomic workflow. 

Results 

In total, this study enrolled 638 patients (442 males and 196 females; mean [± SD] 

age, 41.65 ± 10.21 years; range, 10-69 years). The last follow-up was on October 19, 

2019 with a median follow-up of 5.46 years (interquartile range: 4.52-6.52). All patients 

were divided into the training (n = 447) and test (n = 191) cohorts by computer-

generated random numbers (Figure D1). No significant differences were found between 

groups with respect to any clinical factor (p = 0.18-0.99) in Table 1 summarizing and 

comparing the participant characteristics in the training and test cohorts. Upon the last 

follow-up, 81 (18.1%) in the training cohort and 32 (16.8%) patients in the test cohort 

experienced a confirmed disease progression or death (p = 0.76). 

There was a significant association between each DL-based radiomic signature and 

DFS in the training cohort (C-index: 0.695-0.731, all p < 0.001), which was 

subsequently validated in the test cohort (C-index: 0.706-0.755, all p < 0.001). 

Moreover, we performed a 3-fold cross-validation in each MR sequence of the training 

cohort using the same network architecture and training strategies. In this experiment, 

no significant difference was found between the resulted C-indexes, which ranged from 

0.690 to 0.746 in the holdout validation sets. Univariate analysis explored clinical 

factors in Table 1, and found that pretreatment plasma EBV-DNA (pre-EBV DNA), 

serum level of lactate dehydrogenase (LDH) and C-reaction protein were significantly 

associated with DFS (Table D1). Modelclinic started with all clinical parameters and 

finally identified sex, age, pre-EBV DNA, C-reaction protein and LDH as independent 

variables. Modelclinic obtained worse results than any of DL-based radiomic signatures 

in the training (C-index: 0.640, 95% CI: 0.577-0.703, p < 0.001) and test (C-index: 

0.625, 95% CI: 0.521-0.729, p = 0.018) cohorts. 

When a multivariate CPH model was performed, Modelclinic+dl screened out three 

DL-based radiomic signatures, age, LDH and pre-EBV DNA after adjusting covariates 

(Table D2). Then, a radiomic nomogram for individualized DFS estimation was built 
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using the regression coefficients of Modelclinic+dl (Figure 2A). In the training cohort, 

Modelclinic+dl achieved the strongest prognostic ability for DFS (C-index: 0.771, 95% 

CI: 0.715-0.827, p < 0.001) compared to DL-based radiomic signatures and Modelclinic. 

The same trend was found in the test cohort (C-index: 0.788, 95% CI: 0.695-0.882, p < 

0.001). Good agreement in the calibration curves was observed between the nomogram-

estimated DFS rate and the observed DFS rate at 3 and 5 years (Figure 2B and 2C).  

We identified the threshold score of the radiomic nomogram as 0.398 

corresponding to the total point of 180 in the training cohort and divided patients into 

low- and high-risk groups (Figure 2A). Consequently, the high-risk group exhibited 

short-lived DFS compared to the low-risk group (HR: 6.12, 95% CI: 3.72-10.07, p < 

0.001; 5-year DFS rate: 63.1% vs. 93.0%; Figure 2D) in the training cohort, which was 

verified in the test cohort (HR: 6.90, 95% CI: 3.10-15.36, p < 0.001; 5-year DFS rate: 

66.9% vs. 94.4%; Figure 2E). Similarly, patients in the low-risk group also achieved 

better locoregional relapse-free survival, distant metastasis-free survival, and overall 

survival (all p < 0.001; Figure 3), demonstrating the good clinical usefulness of our 

model.  

When stratified by family history of cancer (yes or no), sex (male or female), C-

reactive protein (normal or abnormal), hemoglobin (normal or abnormal) and smoking 

(yes or no), the radiomic nomogram remained a statistically significant prognostic 

model (Figure D2). Furthermore, TD-ROC analysis also validated the superior 

performance of Modelclinic+dl for predicting DFS (Figure 4). The performance of the 

radiomic nomogram and other models are shown in detail in Table 2. 

Discussion 

We developed and validated the prognostic value of multiparametric MR-based 

radiomics for pretreatment individualized evaluation of DFS in stage T3N1M0 NPC 

patients receiving ICT + CCRT, using an end-to-end deep learning method on this 

relatively large-scale cohort. The DL-based radiomic signatures from single sequence 

of MR images demonstrated significant prognostic value for estimating DFS. 

Integrating radiomic signatures with independent clinical factors adequately improved 
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predictive value compared to the routinely used clinical model and successfully 

stratified patients into the low- and high-risk groups, indicating that it could serve as a 

noninvasive and useful tool for predicting prognosis of stage T3N1M0 NPC patients. 

We have made our prediction models public on an open-access website 

(http://www.radiomics.net.cn/post/126) to facilitate its integration into the routine 

work-up. 

In this study, a state-of-the-art DCNN was used to develop the radiomic signature 

from single sequence of MR images, with Cox partial log likelihood as a loss function 

under the multiple instance learning assumption. The handcrafted radiomic features 

require precise ROIs with good intra/inter-reader agreement and showed unsatisfactory 

results that could not be generalized in our dataset (Appendix C). In contrast, DCNNs 

take tumor-centered boxes as input without need of precise object segmentation and 

have the advantages of end-to-end training strategy and powerful feature representation 

ability [16, 29], which led to our preference for it. The DL-based radiomic signatures 

were highly associated with DFS in the training and test cohorts (all p < 0.001). 

Impressively, the radiomic nomogram with integrated clinical risk parameters and 

radiomic signatures revealed a significant improvement for predicting DFS compared 

to clinical model (training cohort: C-index 0.771 vs. 0.640, p < 0.001; test cohort: C-

index 0.788 vs. 0.625, p = 0.001). Moreover, the radiomic nomogram presented good 

clinical usefulness and stability in prediction of secondary endpoints and stratified 

analysis. Attention map [30] of the radiomic signatures showed that our DCNN focused 

on different regions of the MR images between the high-risk and low-risk patients 

(Appendix D and Figure D3). 

Since older patients have difficulty tolerating intense radiotherapy and high-

intensity chemotherapy, and are more prone to severe comorbidities, the increase in age 

is associated with poor survival in NPC patients [4]. For NPC patients with liver micro 

metastasis, hepatocellular membrane injury and enzyme leakage can result in 

significant elevated baseline LDH levels. Conversely, high serum LDH levels may 

indicate subsequent liver metastasis [31]. Pre-EBV DNA load correlates with tumor 
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burden and has become an acknowledged prognostic biomarker [19, 32]. Our study 

found that they were indeed valuable in predicting the survival of stage T3N1M0 NPC 

patients and were therefore included in our radiomic nomogram. 

Since stage T3N1M0 NPC is the largest subgroup that makes up over 30% of 

LANPC [33], we conducted the study on patients with stage T3N1M0. To date, LANPC 

has multiple treatment patterns, including CCRT, ICT+CCRT, and CCRT plus adjuvant 

chemotherapy [34, 35]. Recent studies indicated that ICT+CCRT could significantly 

improve survival compared with CCRT alone in LANPC [36-38]. Thus, we selected 

patients who had received ICT+CCRT to reduce treatment-related bias. Compared to 

routine molecular biomarkers, our radiomic nomogram is noninvasive, accessible, and 

financially affordable, which could stratify patients at the same stage into two 

subgroups according to predicted survival. For patients in the low-risk group, the 

standard treatment had a good 5-year DFS rate of 93.5% in the entire cohort. For those 

in the high-risk group, the standard treatment did not bring about expected benefits 

(only 64.1% in 5-year DFS rate), but superfluous drug toxicities and economic burden. 

Therefore, the standard treatment was recommended for patients stratified into the low-

risk group while novel regimens, such as immunotherapy [39], may be an option for 

patients stratified into the high-risk group. To our knowledge, this is the first study 

exploring the feasibility of DL-based radiomics in predicting prognosis of stage 

T3N1M0 NPC patients. 

Nevertheless, our study had some limitations. Given that tumors of basilar regions 

are usually inaccessible for biopsy, but are aggressive and can result in skull bone 

invasion, which is associated with poor survival [40], we chose slices of basilar region 

for tumor segmentation and radiomic analysis. Nasopharyngeal and other regions ought 

to be considered in our future study. For patient entry, we focused only on stage 

T3N1M0 patients, so extended research involving other TNM stages should be initiated 

in the future. Besides, all patients were from SYSUCC, which calls for external 

multicenter validations. Moreover, there was possible selection bias owing to the 

retrospective nature of this study. Well-designed prospective studies will be necessary.   
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In conclusion, the current study identified the value of deep learning on MR-based 

radiomics for prognostic prediction in stage T3N1M0 NPC patients treated with 

ICT+CCRT. Our pretreatment radiomic nomogram presented superior discrimination 

for several clinical endpoints and successfully stratified individual patients into two 

groups with distinguishable prognosis, which may act as a noninvasive and useful tool 

for prognostic prediction and risk stratification.
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Figure Captions 

Figure 1. Radiomics workflow in this study. 

Abbreviations: T1w, T1-weighted; T2w, T2-weighted; CE-T1w, contrast enhanced T1-

weighted; MR, magnetic resonance; DL, deep learning. 

Figure 2. The radiomic nomogram, calibration curves and risk stratification in the 

training and test cohorts. The radiomic nomogram built for predicting DFS in this study 

(A). The calibration curves of the radiomic nomogram in the training (B) and test (C) 

cohorts. Risk stratification using the radiomic nomogram in the training (D) and test (E) 

cohorts. Calibration curves were assessed using the Hosmer-Lemeshow test. The 

radiomic nomogram predicts the probability that a patient will not experience disease 

progression within 3 and 5 years. For example, a 50-year-old NPC patient with stage 

T3N1M0 had a primary tumor on the nasopharynx, a LDH of 500 U/L, and a pre-EBV 

DNA of <4000 copy/mL; its radiomic signature scores were 0.4 (DL_T1_sig), -0.4 

(DL_T2_sig), and 0 (DL_T1C_sig) separately. Therefore, the total point of the patient 

was about 212 (40+60+0+60+22+30), and the corresponding 3-year DFS rate and 5-

year DFS rate were about 78% and 70%. 

Abbreviations: LDH, lactate dehydrogenase; pre-EBV DNA, pretreatment plasma 

Epstein–Barr virus DNA; DFS, disease-free survival; HR, hazard ratio; CI, confidence 

interval. 

Figure 3. Overall survival (A and D), distant metastasis-free survival (B and E) and 

locoregional relapse-free survival (C and F) stratified by the radiomic nomogram in the 

training and test cohort.  

Abbreviations: HR, hazard ratio; CI, confidence interval. 

Figure 4. Comparison of survival models using TD-ROC curves. Modelclinic was built 

based on sex, age, pre-EBV DNA, LDH and CRP while Modelclinic+dl based on three 

radiomic signatures, age, LDH and pre-EBV DNA. 

Abbreviations: TD-ROC, time-dependent receiver operating characteristic; AUC, area 

under receiver operating characteristic curve; pre-EBV DNA: pretreatment plasma 

Epstein–Barr virus DNA; LDH: lactate dehydrogenase; CRP: C-reaction protein. 
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Table 1. Baseline characteristics in the training and test cohorts 

Characteristics 
Primary Cohort  

(N = 447) 

Validation cohort  

(N = 191) 
p-value† 

Age, median (range), years 41 (10-69) 41 (16-68) 0.78 

Sex, No. (%)    

 Male 308 (68.9) 134 (70.2) 0.83 

 Female 139 (31.1) 57 (29.8)  

HGB*, median (range), g/L 141.0 (67.0-174.0) 143.0 (91.0-179.0) 0.18  

  Normal  

Abnormal 

388 (86.8) 167 (87.4) 0.93 

  59 (13.2) 24 (12.6)    

Family history of cancer, No. (%)  

 Yes 133 (29.8) 52 (27.2) 0.58 

 No 314 (70.2) 139 (72.8)  

Smoking, No. (%)       

  Yes 129 (28.9) 62 (32.5) 0.42 

  No 318 (71.1) 129 (67.5)   

Drinking, No. (%)    

 Yes 40 (8.9) 19 (9.9) 0.80 

 No 407 (91.1) 172 (90.1)  

WHO pathology type, No. (%)      

  I-II 9 (2.0) 7 (3.7) 0.34 

  III 438 (98.0) 184 (96.3)   

ALB, median (range), g/L 44.5 (33.0-129.0) 44.8 (36.1-52.2) 0.99  

  Normal (≥ 40), No. (%) 410 (91.7) 176 (92.1) 0.98 

  Abnormal (< 40), No. (%)  37 (8.3) 15 (7.9)   

CRP, median (range), mg/L 1.76 (0.14-246.58) 1.79 (0.03-81.17) 0.71 

 Normal (≤ 3), No. (%) 313 (70.0) 131 (68.6) 0.79 

 Abnormal (> 3), No. (%) 134 (30.0) 60 (31.4)  

LDH, median (range), U/L 176.0 (76.6-753.0) 173.6 (109.0-554.0) 0.26  

  Normal (≤ 250), No. (%) 415 (92.8) 182 (95.3) 0.33 

  Abnormal (> 250), No. (%) 32 (7.2) 9 (4.7)   

pre-EBV DNA, median (range), copy/mL 3140 (0-1,070,000)    2560 (0-9,240,000) 0.22 

 < 4000, No. (%) 234 (52.3) 105 (55.0) 0.60 

 ≥ 4000, No. (%) 213 (47.7) 86 (45.0)   

*For male, HGB < 130 is defined abnormal; for female, HGB < 115 is defined abnormal. 

†Continuous variables were tested by either the t-test (for those with normal distribution) 

or the Wilcoxon rank sum test while categorical variables by either the Pearson’s χ2 test 

or the Fisher’s exact test. 
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Note that, the Shapiro-Wilk test was used to decide if variables followed normal 

distribution. For the categorical variables, the default was the Pearson’s χ2 test, which 

was not recommended when some of the cell has small counts (<5). 

Abbreviations: WHO, World Health Organization; LDH, lactate dehydrogenase; HGB, 

hemoglobin; ALB, albumin; CRP, C-reaction protein; pre-EBV DNA, pretreatment 

plasma Epstein–Barr Virus DNA. 

 

Table 2. Performance of deep learning-based radiomic signatures and models for 

predicting DFS 

Signature or model 

Training cohort (n = 447)  Test cohort (n = 191) 

C-index 95% CI p-value* 
 

C-index 95% CI p-value* 

DL_T1_sig 0.731 0.675-0.786 < 0.001  0.712 0.612-0.812 < 0.001 

DL_T2_sig 0.695 0.632-0.758 < 0.001  0.706 0.609-0.802 < 0.001 

DL_T1C_sig 0.701 0.647-0.755 < 0.001  0.755 0.672-0.838 < 0.001 

Modelclinic 0.640 0.577-0.703 < 0.001  0.625 0.521-0.729 0.018 

Modelclinic+dl 0.771 0.715-0.827 < 0.001  0.788 0.695-0.882 < 0.001 

*P-value is used to measure the significance of the difference between the value of a C-

index and 0.5 through the Z-test. 

Note that, Modelclinic was built based on sex, age, pre-EBV DNA, LDH and CRP while 

Modelclinic+dl based on three radiomic signatures, age, LDH and pre-EBV DNA. 

Abbreviations: C-index, Harrell's concordance index; CI, confidence interval. 
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Highlights: 

1. DL-based radiomic signatures were significantly correlated with prognosis of NPC. 

2. DL-based radiomic signatures were complementary to clinical prognostic factors. 

3. The radiomic nomogram improved prediction of DFS, OS, DMFS and LRFS of 

NPC. 

4. The radiomic nomogram may assist in pretreatment risk stratification. 

 

 



A B3-year ROC curves in the training cohort 5-year ROC curves in the training cohort
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