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Translational Relevance 

Induction chemotherapy (IC) plus concurrent chemoradiotherapy (CCRT) has 

emerged as the standard care for locoreigonally advanced nasopharyngeal carcinoma 

(LA-NPC). However, most of patients could not benefit from additional IC and we 

still lack effective markers to perform individualized IC. Our current study developed 

and validated that deep learning-aided PET/CT radiomics could serve as a powerful 

prognostication and help to individual IC. Our findings would provide important 

evidence for clinical treatment of LA-NPC. 

 

Research. 
on April 11, 2019. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 11, 2019; DOI: 10.1158/1078-0432.CCR-18-3065 

http://clincancerres.aacrjournals.org/


5 
 

Abstract 

Purpose: We aimed to evaluate the value of deep learning on positron emission 

tomography with computed tomography (PET/CT)-based radiomics for individual 

induction chemotherapy (IC) in advanced nasopharyngeal carcinoma (NPC). 

Experimental Design: We constructed radiomics signatures and nomogram for 

predicting disease-free survival (DFS) based on the extracted features from PET and 

CT images in training set (n=470), and then validated it on a test set (n=237). 

Harrell’s concordance indices (C-index) and time-independent receiver operating 

characteristic (ROC) analysis were applied to evaluate the discriminatory ability of 

radiomics nomogram, and compare radiomics signatures with plasma Epstein-Barr 

virus (EBV) DNA. 

Results: A total of 18 features were selected to construct CT-based and PET-based 

signatures which were significantly associated with DFS (P < 0.001). Using these 

signatures, we proposed a radiomics nomogram with a C-index of 0.754 (95% 

confidence interval [95% CI]: 0.709-0.800) in training set and 0.722 (95% CI, 

0.652-0.792) in test set. Consequently, 206 (29.1%) patients were stratified as 

high-risk group and the other 501 (70.9%) as low-risk group by the radiomics 

nomogram, and the corresponding 5-year DFS rates were 50.1% and 87.6%, 

respectively (P < 0.0001). High-risk patients could benefit from IC while the low-risk 

could not. Moreover, radiomics nomogram performed significantly better than EBV 

DNA-based model (C-index: 0.754 vs. 0.675 in trainging set and 0.722 vs. 0.671 in 

test set) in risk stratification and guiding IC. 

Research. 
on April 11, 2019. © 2019 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on April 11, 2019; DOI: 10.1158/1078-0432.CCR-18-3065 

http://clincancerres.aacrjournals.org/


6 
 

Conclusion: Deep learning PET/CT-based radiomics could serve as a reliable and 

powerful tool for prognosis prediction and may act as a potential indicator for 

individual IC in advanced NPC.  
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Introduction 

Nasopharyngeal carcinoma (NPC) is a special kind of head and neck cancers which is 

main endemic in South Asia (1). Although the advance in radiotherapy technique and 

chemotherapy strategies has improved the prognosis of NPC, outcomes of patients 

with advanced diasese still remain unsatisfactory, with nearly 30% of cases suffering 

treatment failure (2,3). Unfortunately, more than 70% of patients present with 

locoregionally advanced disease at initial diagnosis (4,5). Management of advanced 

disease remains a challenge for clinicians. 

Induction chemotherapy (IC), given before radical radiotherapy, has been widely 

proven a feasible neoadjuvant treatment with satisfactory efficacy and low toxicities 

in advanced NPC during the past decade (6-9). Consequently, IC has been routinely 

recommended for advanced NPC. However, it should be pointed out that the 

advanced disease consisted of many subgroups and not all of them could benefit from 

additional IC (10,11). Thus, identifying the high-risk subgroups who could benefit 

from IC is the key to improve management of advanced NPC. Although a few 

retrospective studies have found that pre-treatment plasma Epstein-Barr virus DNA 

(pre-DNA) could act as an indicator for IC (12,13), these evidence were not strong. 

Most important of all, the assay standardization of plasma EBV DNA has constrained 

its wide application because differents labs employed different polymerase chain 

reaction assays and therefore produced inconsistent results (14). Thus, it’s worth 

identifying novel and powerful factors to guide IC. 

Radiomics has recently emerged as a promising field in oncology, and is based 
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on the premise that medical imaging can provide important information on tumor 

physiology (15,16). By translating medical imaging into mineable, high-dimension, 

and quantitative imaging features via high-throughput extraction of 

data-characterization algorithms, radiomics offers an easy, effective, and reliable 

method of stratifying patients into risk groups and aids decision-making (15-17). 

Meanwhile, the novel deep learning techniques have shown the promising capabilities 

to extract correlative quantitative representation in many medical applications (18,19). 

Specially, the patch-based strategy makes it possible to implement the training process 

on relatively small data set (20-22). Given this, we conducted this study to evaluate 

the role of deep learning positron emission tomography with computed tomography 

(PET/CT)-based radiomics in risk stratification and guiding individual IC for patients 

with advanced NPC undergoing intensity-modulated radiotherapy (IMRT). 

 

Materials and Methods 

Participant inclusion 

Patients treated at our center between December 2009 and December 2014 were 

reviewed and included for this study if they: (1) received pre-treatment 18F-FDG 

PET/CT test; (2) had newly diagnosed stage III-IVA disease; (3) treated by concurrent 

chemoradiotherapy (CCRT) with or without IC; (4) received IMRT; (5) did not have 

other malignancies. Flow chart of patient inclusion was presented in Figure S1. This 

study was approved by the Research Ethics Committee of our Center, and written 

informed consent was obtained from all patients before treatment. Also, our study was 
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carried out in accordance with the Declaration of Helsinki. The study data underlying 

the findings of current work was deposited at the Research Data Deposit platform 

(RDDA2018000721, available at http://www.researchdata.org.cn/). 

 

PET/CT Imaging Protocol 

18F-FDG PET/CT scans were performed using a dedicated PET/CT system 

(Discovery ST16; GE Medical Systems, Milwaukee, WI, USA). Imaging was 

performed using a combination PET/CT scanner according to PET/CT tumor imaging 

guidelines (23). Detailed information on PET/CT protocol was described in 

Supplementary Method. 

 

Imaging segmentation 

PET/CT images were retrieved from the picture archiving and communication system 

(PACS) and then loaded into ITK-SNAP software (version 2.2.0; www.itksnap.org) 

for manual segmentation. A radiation oncologist (LC) with 13 years of experience 

outlined the regions of interest (ROIs), which to be the volumes of the tumor and 

lymph nodes, on the PET and CT images respectively. Therefore, there were four 

different ROIs being segmented for each patient in this study (Figure S2). After three 

months, 50 patients in training set were selected randomly and segmented again by 

him and another radiation oncologist (L-LT) with 15 years of experience to assess 

intra-/inter-reader agreement of the radiomics analysis. 
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Radiomics features extraction 

Both deep learning features and hand-crafted features were extracted based on the 

PET/CT images to quantify the tumor phenotype (Figure 1). For each ROI, 136 deep 

learning features and 133 hand-crafted features were extracted. We constructed and 

trained four deep convolutional neural networks (DCNNs with 12 or 8 weighted 

layers) to extract deep learning features on the four groups of ROIs respectively 

(Figure S3). A set of hand-crafted features, which was defined by experiential 

algorithms, was also extracted. The features could be divided into four groups: shape 

features, histogram features, gray-level co-occurrence matrix (GLCM) features and 

gray-level run-length matrix (GLRLM) features. 

The architecture and implementation of our DCNNs and the feature extraction 

pipeline were detailed in Supplementary Method. Our DCNNs were implemented 

based on the Python Keras package (https://github.com/fchollet/keras) with the 

TensorFlow library (https://www.tensorflow.org) as the backend. The hand-crafted 

feature extraction was performed in MATLAB 2017a (Mathworks, Natick, MA, USA) 

using an in-house developed tool-box. 

 

Feature selection and Radiomics signature building 

We built two radiomics signatures reflecting the phenotypic characteristics of the 

primary tumor and the lymph nodes in CT and PET images respectively as 

independent predictors of disease-free survival (DFS), i.e. the CT-based signature and 

the PET-based signature. The least absolute shrinkage and selection operator 
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(LASSO) Cox regression method was used to select the most useful prognostic 

combination of features. Then, the radiomics score (Rad-score) was computed for 

each patient through a linear combination of selected features weighted by their 

respective coefficients. Both feature selection and the following radiomics signature 

construction were performed in training set. Supplementary Method detailed the 

feature selection and radiomics signature construction. Furthermore, signatures 

combining either the hand-crafted features or the deep learning features were also 

developed using the same methods for comparison. 

 

Staging Workup and Treatment 

All patients were staged by PET/CT and MRI. Two radiologists (L-ZL and LT) 

reviewed the MRI scans independently, and discrepancy was solved by consensus. 

Tumor stage was grouped according to the 8
th

 edition of the International Union 

against Cancer/American Joint Committee on Cancer manual.  

All the patients received radical IMRT. The cumulative radiation doses were 66 

Gy or greater to the primary tumour and 60-70 Gy to the involved neck area. All 

potential sites of local infiltration and bilateral cervical lymphatics were irradiated to 

50 Gy or greater. All patients were treated with 30-35 fractions with five daily 

fractions per week for 6-7 weeks. IC was cisplatin-based regimens every three weeks 

for 2-4 cycles. Concurrent chemotherapy was weekly or triple-weekly cisplatin.  

 

Clinical endpoints and follow-up 
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To allow earlier individual treatment (24), we set DFS (time from diagnosis to disease 

progression or death from any cause) as the main endpoint and nomograms were built 

based on it. Other endpoints included OS (time from diagnosis to death from any 

cause), distant metastasis-free survival (DMFS, time from diagnosis to first distant 

metastasis) and locoregional relapse-free survival (LRRFS, time from diagnosis to 

first local or regional recurrent or both). 

Patients were followed by routine imaging methods every 3 months during the 

first 2 years, every 6 months at the 3-5
th

 years and annually thereafter. Follow-up 

duration was measured from the day of diagnosis to last visit or death. All local and 

regional recurrence was confirmed by pathology. Distant metastasis was diagnosed 

mainly based on imaging methods like MRI, CT or PET-CT. 

 

Statistical Analysis 

To compare radiomics signatures with pre-DNA, we also developed two clinical 

nomograms, one using only clinical factors (age, gender, smoking, drinking, family 

history of cancer, lactate dehydrogenase, hemoglobin, albumin, C-reaction protein, T 

category, N category and overall stage) without pre-DNA (nomogram A), and another 

using these clinical factors with pre-DNA (nomogram B). The radiomics nomogram 

was defined as nomogram C. 

To evaluate the reproducibility of our model’s prognostic performance and the 

stability of the feature selection, we repeated the randomized assignment of 

training/test sets 10 times. Subsequently, the model was re-trained and validated 
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repeatedly.  

Statistical analysis was conducted with R software (version 3.4.4; 

http://www.Rproject.org) and MATLAB. A two-sided P value <0.05 was used as the 

criterion to indicate a statistically significant difference. Detailed information on 

statistical methods was shown in Supplementary Method. 

 

Result 

Baseline information of participants 

In total, 707 patients were recruited for this study, among them 436 (61.7%) and 271 

(38.3%) patients had stage III and IVA disease, respectively. Additionally, 469 (66.3%) 

received IC plus CCRT and 238 (33.7%) received CCRT alone. We then used 

computer-generated random numbers to divide patients into a training set (n=470) and 

a test set (n=237, Table 1). The median follow-up duration of the whole cohort was 

55.7 months (range, 1.3–93.6 months). Upon the last follow-up, 109 (23.2%) in 

training set and 52 (21.9%) patients in test set experienced a confirmed disease 

progression (P = 0.708). 

 

Radiomics signature building and validation 

There were 5 and 13 radiomics features selected from the CT-based and PET-based 

feature sets respectively, and the detailed selection process was presented in Table S1 

and Table S2. The selected features and corresponding coefficients in the formula of 

each Rad-score were listed in Table S3. In training set, the CT-based and PET-based 
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Rad-score yielded C-indexes of 0.738 (95% CI: 0.690-0.786) and 0.730 (95% CI: 

0.683-0.776), respectively. The good prognostic performances were validated with the 

corresponding C-indexes of 0.707 (95% CI: 0.635-0.779) and 0.683 (95% CI: 

0.610-0.755) in test set. Furthermore, as presented in Table S4, the radiomics 

signature achieved the best discriminatory ability when it combined both the 

hand-crafted features and the deep learning features. 

 

Development of an Individualized Prediction Model 

For univariate analysis, clinical factors including pre-DNA, N stage and overall stage 

were found significantly associated with DFS (Table S5). When multivariate Cox 

proportional hazard model was performed, the two radiomics signatures (CT-based 

signature [per 1 increase]: HR, 2.99; 95% CI, 1.84-4.86; P < 0.001; PET-based 

signature [per 1 increase]: HR, 2.32; 95% CI, 1.55-3.46; P < 0.001) remained 

significant for DFS after adjustment for various cofactors (Table S6). Then, a 

radiomics nomogram for individualized DFS estimation was built using the above 

regression coefficients (Figure 2A). 

 

Performance and Validation of the Radiomics Nomogram 

The radiomics nomogram was significantly associated with DFS (all P < 0.001), with 

C-indexes of 0.754 (95% CI, 0.709-0.800) in training set and 0.722 (95% CI, 

0.652-0.792) in test set. The calibration curves of nomogram for DFS are shown in 

Figure 2B which showed better agreement between the estimated outcomes and the 
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observed outcomes (all P > 0.05). Moreover, the prognostic accuracy of the radiomics 

nomogram at 1, 3 and 5-year was also satisfactory (all P < 0.01, Figure S4).  

We identified the cut-off score of radiomics nomogram as 0.311 corresponding 

to the total point of 79 in Figure 2A. Consequently, 135 (28.7%) in training set and 

71 (30.0%) in test set with scores ≥ 0.311 were classified as high-risk group, and 335 

(71.3%) and 166 (70.0%) in training and test sets with scores < 0.311 as low-risk 

group (Figure S5). Baseline information of the high-risk and low-risk groups was 

presented in Table S7. For high-risk vs. low-risk group, the 5-year DFS rate was 46.7% 

vs. 88.6% (HR, 6.29; 95% CI, 4.24-9.35; P < 0.001) in training set, and 57.4% vs. 

85.6% (HR, 3.90; 95% CI, 2.24-6.76; P < 0.001) in test set (Figure 3). Similarly, 

patients in low-risk group also achieved better OS, DMFS and LRRFS (all P < 0.01, 

Figure 3, Table S8). When stratified by age (> 45y or ≤ 45y), gender (female or male) 

and pre-DNA (> 4000 copies/ml or ≤ 4000 copies/ml), the radiomics nomogram 

remained a clinically and statistically significant prognostic model (Figure S6). The 

KM curves of the low-/high-risk groups crossed approximately at 2 years for DFS on 

the patients with overall stage IVA, which suggested that a finer-grained model 

constructed based on larger-scale training set was needed. Meanwhile, our model 

successfully split the patients for different OS in all stratification cases, except for the 

female group in which only four patients dead during the follow-up (Figure S7).  

Furthermore, we split the whole data set into paired training (70%) and test (30%) 

sets 10 times, followed by the repeating construction and validation of the predictive 

model. In this experiment, the features involved into the new models yielded a very 
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high possibility (144/165) to be highly correlated with the eighteen selected features 

(i.e. with the Pearson correlation coefficients > 0.8). Moreover, there was no 

significant difference found between the resulted C-indexes ranging from 0.703 to 

0.749 in the holdout test sets. 

 

Comparing radiomics signature with pre-DNA 

Overall, data on pre-DNA was available for 456 patients in training set and 228 

patients in test set. Independent factors and their coefficients for nomogram A and B 

were shown in Supplementary Result. In training set, nomogram C (C-index, 0.754; 

95% CI, 0.709-0.800) achieved stronger prognostic ability for DFS than nomogram A 

(C-index, 0.684; 95% CI, 0.621-0.747) and nomogram B (C-index, 0.675; 95% CI, 

0.619-0.731). This finding was also validated in test set (nomogram C: C-index, 0.722; 

95% CI, 0.652-0.792; nomogram A: C-index, 0.661; 95% CI 0.565-0.758; nomogram 

B: C-index, 0.671; 95% CI 0.590-0.752). Furthermore, time-independent receiver 

operating curve (ROC) analysis also validated that nomogram C had the best 

prognostic power (Figure 4). 

 

Benefit of induction chemotherapy 

For the whole cohort, survival outcomes were comparable between IC+CCRT and 

CCRT alone groups (Figure S8, Table S9). Then, we applied our radiomics 

nomogram to predict if patients could benefit from IC. Within the high-risk group, 

patients receiving IC plus CCRT (n = 173) achieved significantly better 5-year DFS 
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(53.5% vs. 32.5%, P = 0.001), OS (71.8% vs. 38.1%, P < 0.001) and DMFS (70.6% 

vs. 40.0%, P < 0.001; Figure 5, Table S10) rates than those receiving CCRT alone (n 

= 33). However, for the 501 patients with low risk, 5-year DFS (88.9% vs. 85.7%, P = 

0.505), OS (93.5% vs. 94.0%, P = 0.611), DMFS (93.6% vs. 93.9%, P = 0.815) and 

LRRFS (94.3% vs. 90.0%, P = 0.162; Figure S9, Table S11) rates did not 

significantly differ between IC plus CCRT (n = 296) and CCRT alone (n = 205). 

When applying nomogram A and B to predict the benefit of IC, they either failed or 

had less power than nomogram C (Supplementary Result). 

 

Discussion 

We undertook this study to develop and validate the prognostic value of 

multiparametric PET/CT-based radiomics in advanced NPC, and our findings 

suggested that the radiomics nomogram was powerful in risk stratification and 

guiding the individual IC. Moreover, the radiomics signatures performed better than 

current TNM staging system and prognostic biomarker plasma EBV DNA, indicating 

that it could act as a novel and useful tool for future management of advanced NPC. 

The prediction models built in this study are available on our website 

(www.radiomics.net.cn/platform.html). 

One main challenge of our study is the extraction and selection of radiomics 

features, which were most associated with DFS, to develop radiomics signatures. 

Initially, 136 deep learning and 133 hand-crafted features from each ROI were 

extracted. For deep learning feature extraction, we constructed 4 DCNNs and trained 
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the weighted parameters through a patch-based strategy. After data augmentation, the 

size of training samples reached the order of ten thousand. Moreover, instead of using 

the DCNNs as the predictive tools directly or collecting the outputs of some layers as 

the features, we quantified the characteristics of the feature maps (Figure S10) from 

many aspects using the statistical algorithms to extract more comprehensive features, 

as well as to improve stability and generalization. By using LASSO, 18 features were 

finally selected. It should be noted that LASSO is suitable for handling a mass of 

radiomics features with a relatively small sample size and avoid overfitting (25,26). 

The radiomics features selected by LASSO are usually accurate, and the regression 

coefficients of extracted features are shrunk to zero during the process of model 

fitting, allowing the selection of features that are most strongly associated with DFS 

and making the model easier to interpret (27). Most importantly, LASSO allows 

radiomics signatures to be constructed by combining the selected features. In our 

study, the identified features were highly associated with DFS in both training and test 

sets. 

As shown by our results, radiomics nomogram performed better than clinical 

TNM staging system in risk stratification (C-index: 0.754 in training set and 0.722 in 

test set). There may be two major reasons for this: First, the TNM system was 

developed based on tumor size, lymph node status, and metastasis status, which only 

reflect anatomic information. Patients even with the same tumor stage could have 

different prognosis (28). Second, our signature features carry information on 

intra-tumor heterogeneity which is an established prognostic factor (29,30). 
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Radiomics extracts the tumor imaging characteristics on medical images, providing a 

powerful means of interpreting intra-tumor heterogeneity; traditional clinical tumor 

stages cannot provide this information. This may be the main reason that the 

radiomics signatures and proposed nomogram performed better than TNM 

classification in predicting prognosis and stratifying risk. 

As plasma EBV DNA has been widely identified as a reliable and useful 

biomarker at clinical practice (31-34), we then compared radiomics signatures with it. 

Intriguingly, the C-index of nomogram C is higher than that of nomogram B (0.785 

vs. 0.683 in training set, 0.771 vs. 0.671 in test set), indicating that the prognostic 

ability of radiomics signatures was better than that of pre-DNA. Moreover, this 

conclusion was further supported by the results of time-independent ROC analysis 

(Figure 5). When using these nomograms to predict the benefit of IC, nomogram C 

significantly performed better than both nomogram A and B. Taken these together, 

radiomics signatures were more powerful than plasma EBV DNA in prognosis 

prediction. Notably, we did not included EBV DNA into the radiomics nomogram 

initially because a few patients lost the data. 

Currently, distant metastasis after radical radiotherapy has emerged as the 

predominant failure pattern for advanced NPC as IMRT has improved local and 

regional control greatly (3,35). IC, given before radiotherapy, has been proven as a 

robust tool against this treatment failure (6-9). Although the most effective IC 

regimen of triple of docetaxel plus cisplatin with fluorouracil (TPF) was delivered, 

however, the absolute benefit was only observed in 8% of the patients (8), meaning 
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that more than 70% of patients could not benefit from IC. Meanwhile, these patients 

have to suffer from the severe toxicities and economic burden brought by IC. Given 

these, it is of great important to identify those non-IC benefit patients. Although 

previous studies found that pre-DNA may play this role (12,13), these studies were 

retrospective and had small sample size, making the results inconclusive. In our study, 

we established PET/CT-based radiomics as a strong indicator for IC, i.e., high-risk 

patients could benefit from IC while low-risk could not. These findings provided a 

new insight into future delivery of IC. 

Compared with previous studies regarding radiomics (36-39), there were mainly 

four advantages in our study. First, the sample size was larger, thus improving the test 

power and the predictive ability of the model. Second, all patients were staged by 

PET/CT, which achieved higher diagnostic accuracy than conventional staging 

workup in NPC (40,41). Undoubtedly, this accurate stage classification enables the 

robust prognostic prediction by radiomics signatures. Third, all patients received the 

standard care of CCRT with or without IC, which could reduce treatment-related bias 

on our conclusion. Finally, a deep learning method, named convolutional neural 

network (42), was applied for features extraction. Deep learning radiomics method 

could learn features included in neural nets’ hidden layers automatically from imaging 

data, and thus do not need object segmentation and hard-coded feature extraction (43). 

Limitations of our study should also be acknowledged. Follow-up duration may not 

be long enough; therefore we constructed nomograms based on DFS. Study data was 

collected from a single center, and external validation may be warranted in future. 
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Moreover, potential patient selection biases confounded with radiomics signatures and 

outcomes may exist because IC treatment was not randomly assigned to participants 

as a result of retrospective nature, indicating that our results should be further 

validated in prospective and well-designed studies. 

In summary, our current study identified PET/CT-based radiomics as a powerful 

approach for predicting prognosis in patients with advanced NPC. The radiomics 

nomogram successfully stratified patients into high-risk and low-risk groups for all 

endpoints, and thereby may act as a potential tool for individualized treatment 

strategies: high-risk patients should receive more intensity treatment like IC plus 

CCRT; for low-risk patients, CCRT may be enough. Future prospective studies with 

external validation are needed to validate our findings. 
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Figure legends 

Figure 1. Radiomics workflow in this study. 

 

Figure 2. (A) Radiomics nomogram; (B) Radiomics nomogram calibration curves. 

PET, positron emission tomography; CT, computed tomography; DFS, disease-free 

survival. 

 

Figure 3. Disease-free survival, overall survival, distant metastasis-free survival and 

locoregional relapse-free survival Kaplan-Meier curves between the radiomics 

nomogram-defined high-risk and low-risk groups in training and test sets. 

 

Figure 4. ROC curves comparing the predictive power of three nomograms for DFS 

in training and test sets. ROC, receiver operator characteristic; AUC, area under the 

curve; DFS, disease-free survival. 

 

Figure 5. Kaplan-Meier survival curves between IC+CCRT and CCRT alone within 

the radiomics nomogram-defined high-risk group. IC, induction chemotherapy; CCRT, 

concurrent chemoradiotherapy. 
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Table 1. Baseline information of the training and internal validation sets. 

Characteristics Training set 

(n = 470) 

Test set 

(n = 237) 

P values 
a
 

 No. (%) No. (%)  

Age (y)   0.759 

 Median (range) 45 (9-76) 44 (10-76)  

Gender   0.458 

 Female 111 (23.6) 62 (26.2)  

 Male 359 (76.4) 175 (73.8)  

Smoking   0.155 

 Yes 157 (33.4) 92 (38.8)  

 No 313 (66.6) 145 (61.2)  

Drinking   0.454 

 Yes 58 (12.3) 34 (14.3)  

 No 412 (87.7) 203 (85.7)  

WHO pathology type  0.710 

 I 3 (0.6) 1 (0.4)  

 II-III 467 (99.4) 236 (99.6)  

Family history of cancer  0.231 

 Yes 143 (30.4) 62 (26.2)  

 No 327 (69.6) 175 (73.8)  

LDH (U/L)   0.120 

 Median (range) 177 (100-658) 174 (118-626)  

HGB (g/L)   0.092 

 Median (range) 146 (79-178) 144 (91-176)  

ALB (g/L)   0.484 

 Median (range) 44.2 (31-53) 44 (25-54)  

CRP (mg/L)   0.549 

 Median (range) 2 (0-127.2) 2.1 (0-126.6)  
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Pre-DNA (copies/ml) 
b
  0.376 

 Median (range) 5385 (0-68700000) 4855 (0-1840000)  

T category 
c
   0.118 

 T1 24 (5.1) 10 (4.2)  

 T2 50 (10.6) 13 (5.5)  

 T3 287 (61.1) 151 (63.7)  

 T4 109 (23.2) 63 (26.6)  

N category 
c
   0.694 

 N0 46 (9.8) 24 (10.1)  

 N1 206 (43.8) 111 (46.8)  

 N2 135 (28.7) 58 (24.5)  

 N3 83 (17.7) 44 (18.6)  

Overall stage 
c
   0.664 

 III 292 (62.1) 143 (60.3)  

 IVA 178 (37.9) 94 (39.7)  

Treatment   0.085 

 IC+CCRT 322 (68.5) 147 (62.0)  

 CCRT alone 148 (31.5) 90 (38.0)  

Abbreviations: WHO, world health organization; LDH, lactate dehydrogenase; HGB, hemoglobin; 

ALB, albumin; CRP, C-reaction protein; Pre-DNA, pre-treatment plasma Epstein-Barr Virus DNA; 

IC, induction chemotherapy; CCRT, concurrent chemoradiotherapy. 

a 
P values were calculated by Chi-square test for categorical variables and non-parametric test for 

continuous variables. 

b 
23 patients lost this data. 

c 
According to the 8

th
 edition of the International Union against Cancer/American Joint Committee 

on Cancer (UICC/AJCC) staging manual. 
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Pre-DNA (copies/ml) 
b
  0.376 

 Median (range) 5385 (0-68700000) 4855 (0-1840000)  

T category 
c
   0.118 

 T1 24 (5.1) 10 (4.2)  

 T2 50 (10.6) 13 (5.5)  

 T3 287 (61.1) 151 (63.7)  

 T4 109 (23.2) 63 (26.6)  

N category 
c
   0.694 

 N0 46 (9.8) 24 (10.1)  

 N1 206 (43.8) 111 (46.8)  

 N2 135 (28.7) 58 (24.5)  

 N3 83 (17.7) 44 (18.6)  

Overall stage 
c
   0.664 

 III 292 (62.1) 143 (60.3)  

 IVA 178 (37.9) 94 (39.7)  

Treatment   0.085 

 IC+CCRT 322 (68.5) 147 (62.0)  

 CCRT alone 148 (31.5) 90 (38.0)  

Abbreviations: WHO, world health organization; LDH, lactate dehydrogenase; HGB, hemoglobin; 

ALB, albumin; CRP, C-reaction protein; Pre-DNA, pre-treatment plasma Epstein-Barr Virus DNA; 

IC, induction chemotherapy; CCRT, concurrent chemoradiotherapy; AC, adjuvant chemotherapy. 

a 
P values were calculated by Chi-square test for categorical variables and non-parametric test for 

continuous variables. 

b 
23 patients lost this data in SYSUCC cohort. 

c 
According to the 8

th
 edition of the International Union against Cancer/American Joint Committee 

on Cancer (UICC/AJCC) staging manual. 

- 
Data was not available. 
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