
HEAD AND NECK

MR-based radiomics signature in differentiating ocular adnexal
lymphoma from idiopathic orbital inflammation

Jian Guo1
& Zhenyu Liu2

& Chen Shen3
& Zheng Li1 & Fei Yan1

& Jie Tian2,4
& Junfang Xian1

Received: 4 September 2017 /Revised: 6 February 2018 /Accepted: 8 February 2018
# European Society of Radiology 2018

Abstract
Objectives To assess the value of the MR-based radiomics signature in differentiating ocular adnexal lymphoma (OAL) and
idiopathic orbital inflammation (IOI).
Methods One hundred fifty-seven patients with pathology-proven OAL (84 patients) and IOI (73 patients) were divided into
primary and validation cohorts. Eight hundred six radiomics features were extracted from morphological MR images. The least
absolute shrinkage and selection operator (LASSO) procedure and linear combination were used to select features and build
radiomics signature for discriminating OAL from IOI. Discriminating performance was assessed by the area under the receiver-
operating characteristic curve (AUC). The predictive results were compared with the assessment of radiologists by chi-square
test.
Results Five radiomics features were included in the radiomics signature, which differentiated OAL from IOI with an AUC of
0.74 and 0.73 in the primary and validation cohorts respectively. There was a significant difference between the classification
results of the radiomics signature and those of a radiology resident (p < 0.05), although there was no significant difference
between the results of the radiomics signature and those of a more experienced radiologist (p > 0.05).
Conclusions Radiomics features have the potential to differentiate OAL from IOI.
Key Points
• Clinical and imaging findings of OAL and IOI often overlap, which makes diagnosis difficult.
• Radiomics features can potentially differentiate OAL from IOI non invasively.
• The radiomics signature discriminates OAL from IOI at the same level as an experienced radiologist.
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Abbreviations
ADC Apparent diffusion coefficient

AUC Area under the ROC curve
DCE Dynamic contrast enhanced
DWI Diffusion-weighted imaging
ETL Echo train length
FS Fat saturation
FSE Fast spin echo
GLCM Grey level co-occurrence matrix
GLRLM Grey level run length matrix
ICC Intraclass correlation coefficient
IOI Idiopathic orbital inflammation
LASSO Least absolute shrinkage and selection operators

procedure
MRI Magnetic resonance imaging
NEX Number of excitations
OAL Ocular adnexal lymphoma
ROC Receiver-operating characteristic
SRHGE Short-run high-grey emphasis
T1WI T1-weighted images
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T2WI T2-weighted image
TE Echo time
TR Repetition time

Introduction

Ocular adnexal lymphoma (OAL) is the most common or-
bital malignant neoplasm in adults [1–4] and local radio-
therapy is the first-line treatment [5, 6]. Idiopathic orbital
inflammation (IOI) remains the third most common orbital
disease, following after thyroid-associated orbitopathy and
lymphoproliferative disease [7], and oral corticosteroids
are the mainstay of treatment [8, 9]. The clinical and imag-
ing findings of these entities often overlap, and a biopsy
may be needed to provide tissue diagnosis [10, 11]. As
biopsy is an invasive process with known risks and the
biopsy tract may remain afterwards, this method is also
discommodious for lesions of the orbital apex and those
around the optic nerve [5, 12, 13]. It is desirable to seek
alternative noninvasive diagnostic confirmation to guide
appropriate treatment.

MRI is the preferred modality for evaluating orbital
masses [14]. Some reported MRI findings (such as the
tumour location, signal intensity on T2-weighted imaging
(T2WI), moulding sign and contrast enhancement charac-
teristics) are useful in separating OAL from IOI [15–17].
There are, however, other studies reporting the limitations
of these diagnostic characteristics [12, 18]. Diffusion-
weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) MRI were also used to characterise or-
bital masses and to distinguish OAL from IOI, albeit with
a partial overlap [19–24]. Most of these studies showed
obvious semi-quantitative differences between lesions
based on a relatively limited of number of cases [21,
22]. Hence, the conclusions were not always consistent.
For example, Sun et al. reported a specificity of 100% for
the differentiation of OAL from IOI using ADC [24],
wh i l e Xu [25 ] r epo r t ed spec i f i c i t y o f 61 .1%.
Furthermore, Kapur et al. reported no significant differ-
ence in the ADC ratio between OAL and IOI [21]. It can
therefore be seen that the literature to date provides lim-
ited help in discriminating OAL and IOI. Therefore, the
imaging-based differential diagnosis of OAL and IOI still
presents substantial room for improvement.

In recent years, the development of machine learning and
pattern classification resulted in the growing importance of
radiomics [26, 27]. Radiomics refers to the extraction and
analysis of large amounts of advanced quantitative imaging
features obtained with high throughput from medical images.
These quantitative features, which may not be perceptible to
human vision, can potentially provide valuable diagnostic,
prognostic or predictive information in oncology [28–33].

Recent studies have shown promising results for imaging-
extracted textural features in the differential diagnosis of ma-
lignant and benign tumours. Most of these reports involve
breasts, soft tissue, lymph nodes and head and neck [34–38].

A review of the literature to date shows no reports on the
predictive imaging features of orbital masses using radiomics.
The aim of this study is to investigate the utility of extracted
radiomics features that may help to characterise or discrimi-
nate OAL from IOI.

MATERIALS AND METHODS

Patients

This retrospective study was approved by our institutional
review board and the requirement for informed consent was
waived. All patient data and personal information were
anonymised prior to analysis.

The study population consisted of 157 (84 OALs and 73
IOIs) patients enrolled consecutively between March 2010
and July 2016. The inclusion criteria were: (1) histopatho-
logically confirmed cases of primary OAL or IOI; (2) pa-
tients with orbital MRI (including pre- and post-contrast
studies) less than 14 days before biopsy or surgery; (3)
patients with no history of surgery or treatment in the af-
fected orbits. The exclusion criteria were as follows: (1)
poor image quality such as significant motion or suscepti-
bility artefacts; (2) orbital lesions less than 0.5 cm in short
diameter; (3) OAL secondary to systemic lymphoma; (4)
patients with IOI or OAL.

The consecutive study population was divided into two
groups according to the time points. The first group (recruited
fromMarch 2010 to September 2014) consisted of 94 patients
(47 OALs and 47 IOIs). They formed the primary cohort of 46
males and 48 females (mean age, 50.55 ± 14.03 years; age
range, 5–85 years). The second group (recruited fromOctober
2014 to July 2016) consisted of 63 consecutive patients (37
OALs and 26 IOIs). They constituted the independent valida-
tion cohort of 39 males and 24 females (mean age, 55.37 ±
13.36 years; age range, 25–80 years).

Image data acquisition

All imaging was performed on a 3.0-T Signa HDxt scanner
(GE Healthcare) with an eight-channel high-resolution head
coil. Pre-contrast axial fast spin-echo (FSE) T1-weighted im-
ages (T1WI), T2-weighted images (T2WI) and post-contrast
T1WI in the axial and coronal planes were acquired in all
cases. The imaging parameters are shown in Table 1. Post-
contrast T1WI were obtained after an intravenous bolus injec-
tion of 0.1 ml/kg gadopentetate dimeglumine. Chemical shift
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selective fat saturation (FS) was used in the post-enhancement
axial T1WI.

Image segmentation and feature extraction

Image segmentation was done separately on axial T2WI and
post-enhanced T1WI sequences using the open-source ITK-
SNAP software (http://www.itksnap.org). Manual free hand
delineation of a region of interest (ROI) was performed on a
selected slice containing the largest lesion area. Two radiolo-
gists (without prior knowledge of the histopathological diag-
nosis) independently performed segmentation. Radiologist 1
was board certified with 16 years of head and neck imaging
experience, while radiologist 2 was a resident with 4 years of
head and neck imaging experience.

The ROI outlines were read and processed using a fea-
ture quantisation programme developed in house by our
institution. Processing was carried out using MATLAB
2014b (MathWorks, USA). Two-dimensional features in
the calculation included first-order grey-level statistics
(grey-level histograms) and grey-level texture features with
and without wavelet filtering. Grey-level texture features
included the grey-level run-length matrix (GLRLM) and
the grey-level co-occurrence matrix (GLCM) features.
Eight hundred six features in total were known to be effec-
tive [29].

Features selection, radiomics signature building
and validation

A feature selection method based on the least absolute
shrinkage and selection operator (LASSO) was employed
to reduce the dimensionality of extracted features. LASSO
is a regression analysis method that performs both variable
selection and regularisation of high-dimensional data. We
adopted the Bglmnet^ package in R software to fulfil feature
selection in the primary cohort. Linear combination of the
selected features was used to construct the radiomics signa-
ture. The predictive performance of the signature was
assessed in the primary cohort and validated in the valida-
tion cohort. The area under the receiver-operating

characteristic (ROC) curve (AUC) was used to evaluate
the predictive performance of the signature in differentiat-
ing OAL from IOI. Figure 1 shows the framework for the
radiomics workflow.

Imaging analysis by the radiologists

To compare the diagnostic performance of the radiomics sig-
nature with visual assessment, MRIs (pre-contrast T1WI,
T2WI and post-contrast T1WI) of all 157 cases were indepen-
dently reviewed by the same two radiologists that completed
image segmentation.

All personal information was de-identified prior to analysis
and both radiologists had no prior knowledge of the histopath-
ological results. In addition, they had no access to other func-
tional sequences (including DWI and DCE). Diagnosis was
based on image analysis according to their respective clinical
experience. The locations of the OAL and IOI were
categorised into four groups: intraconal, extraconal, preseptal
and multi-compartmental lesions. Diagnostic sensitivity, spec-
ificity and accuracy were calculated and compared with the
histopathological results.

Statistical Analysis

Statistical analyses were carried out in R 3.3.0 (R Development
Core Team, 2016). The two-sided statistically significant level
was set to 0.05. The differences in age and gender distribution
between the primary and validation cohorts were compared by
means of independent samples t-test and chi-square test respec-
tively (two-tailed, p < 0.05). The intraclass correlation coeffi-
cients (ICCs) were used to assess agreement of extracted fea-
tures by two radiologists. Kappa test analyses were performed
to determine the inter-observer agreement. The BGlmnet^
package was used in feature selection and radiomics signature
development. ROC curves were drawn using the BpROC^
package. The BHmisc^ and Brms^ packages were used in the
validation process. All the above-mentioned software packages
are subject to the open source GPL v2 license (GNU general
public license version 2). The chi-square test was used for the

Table 1 MR scanning parameters on the 3.0-T scanner

Sequence TR
(ms)

TE
(ms)

Field of view
(mm)

Number
of slices

Slice
thickness
(mm)

Slice gap
(mm) NEX

Acquisition
time (min)

Bandwidth
(HZ/px)

Matrix
ETL

T1WI FSE 400 10 18*18 16 3 0.3 2 2’12 41.67 384*256 4

T2WI FSE 2880 120 18*18 16 3 0.3 2 1’32 41.67 384*256 18

Post-contrast
T1WI

400 10 18*18 16 3 0.3 2 2’12 41.67 384*256 4

TR repetition time; TE echo time; NEX number of excitations; ETL echo train length
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statistical analysis of the classified data of the two radiologists
and radiomics signatures.

Results

Clinical characteristics of the patients

There were significant differences in age and gender distribu-
tion between the two diseases (p < 0.05) (Table 2). Compared
with IOI, OAL has a predilection for older male patients. No
significant differences in the clinical characteristics between

the two cohorts of OAL and IOI (respectively p = 0.138-
0.613) were demonstrated.

Feature selection, radiomics signature development
and diagnostic validation

The ICCs calculated for agreement of features extracted by the
two radiologists ranged from 0.763 to 0.895, reflecting good
agreement. (The segmentation results of the radiologist with
more working experience were used for further analysis). To
identify the relevant predictors, all explanatory features ex-
tracted from the primary cohort were included in the
LASSO logistic regression procedure. Features with

Fig. 1 The radiomics workflow. Segmentation is performed on MR
images to define the tumour region. From this region, the radiomics
features are extracted, including grey-level first-order statistics and
texture analysis with and without wavelet filtering. Using the least
absolute shrinkage and selection operator (LASSO) method, several

features were selected to build the radiomics signature. Finally, the
classification ability of the radiomics signature was evaluated by the
receiver-operating characteristics (ROC) curves obtained in both the
training and validation cohorts

Table 2 Age and gender distribution of OAL and IOI

Primary cohort (94) Validation cohort (63)

OAL IOI p OAL IOI p

Gender, no. 47 47 37 26

Male 31 15 0.002* 29 10 0.002*
Female 16 32 8 16

Age (mean ± SD, years) 54.83 ± 12.28 46.28 ± 14.49 0.003* 59 ± 13.13 50.19 ± 12.13 0.009*

*p < 0.05
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regression coefficients of zero or close to zero were eliminat-
ed. Finally, 5 features (1 grey-level first-order statistical fea-
ture, 2 texture features and 2 texture features with wavelet
filtering) out of 806 radiomics features were selected to build
the predictive model. Among them, four features were based
on post-contrast T1WI with fat saturation and one on T2WI.
There were significant differences (p < 0.05) in feature values
of grey-level median, GLCM entropy and GLRLM SRHGE
(short-run high-grey emphasis) after wavelet filtering between
OAL and IOI in both the primary and validation cohorts
(Table 3).

The radiomics signature was constructed (with the five
above-mentioned features) by means of linear combination
according to their coefficients. The diagnostic performance
of the radiomics signature was evaluated using the ROC curve
of the primary and validation cohort (Fig. 2). The patient-
based diagnostic accuracy of the radiomics signature for the
binary classification of OAL or IOI revealed an AUC of 0.74
(95% CI, 0.65 to 0.88) in the primary cohort. The diagnostic
validation was done in the independent cohort with anAUC of
0.73 (95% CI, 0.67 to 0.85) (Table 4). Forty-one cases were
wrongly classified according to the radiomics signature
(Table 5).

Imaging analysis by the radiologists

Both OAL and IOI can involve one or more orbital com-
partments. For OAL, disease location was found as follows:
intra-conal (8/84, 9.5%); extra-conal (17/84, 20.2%);
preseptal compartment (6/84, 7.1%); multi-compartments
(53/84, 63.1%). As for IOI, the following was found:
intra-conal (4/73, 5.5%); extra-conal (33/73, 45.2%);
preseptal compartment (2/73, 2.7%); multi-compartments
(34/73, 46.6%).

The diagnostic performance of the MRI visual assessment
was evaluated. Sensitivity, specificity and accuracy of the
more experienced radiologist, not surprisingly, were higher
than those of the radiology resident (Table 4). The accuracies
of MRI assessments were 72.61% (experienced radiologist)
and 62.42% (radiology resident). Inter-observer agreement
showed a kappa value of 0.61 (95% CI 0.553–0.781).

Comparisons of visual assessment and radiomics
signature results

The chi-square test showed a significant difference between
the discriminating results of the radiomics signature and those
of the radiology resident (p = 0.039 < 0.05). There was how-
ever no significant difference between the discriminating re-
sults of the radiomics signature and those of the experienced
radiologist (p = 0.899 > 0.05). These findings indicate the
radiomics signature has a higher level of performance com-
pared with a resident but achieves a level equivalent to that Ta
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of an experienced radiologist. Similar results were obtained in
both the primary and validation cohorts.

The misjudgement ratio (ratio of the misclassification num-
ber and total number of cases for both OAL and IOI) of the
radiomics signature was also similar to that of the experienced
radiologist but superior to that of the resident in both study
cohorts. Table 5 shows the wrongly classified cases by
radiomics signature and radiologists (as well as the location of
the lesions). It shows that only 15 (34.88%) and 18 (30.51%)
cases misclassified respectively by radiologist 1 and radiologist
2 were also misclassified by the radiomics signature.

Discussion

Distinguishing OAL from IOI based on MRI morphology is
challenging (especially in hyper-cellular lesions) [39]. There

are often no significant differences in the tumour laterality,
shape, location or signal intensity between the benign (mainly
IOI cases) and malignant (OAL) orbital lymphoproliferative
disorders groups [25]. In the current study, we employed
T2WI and post-contrast T1WI to investigate the diagnostic
performance of radiomics features in discriminating OAL
from IOI. We found that the MR-based radiomics signature
was effective in distinguishing OAL from IOI, reaching the
level of an experienced radiologist.

The present study shows quantitative image features such
as texture analysis can be extracted from T2WI and post-
contrast T1WI. This is consistent with findings of other inves-
tigators [32, 40, 41]. In our study, image segmentation was
done on a single slice showing the largest tumour cross-
sectional area. Previous texture analysis studies performed
on the largest cross-sectional tumour area have also shown
promising results in biological correlates [29, 42, 43] and

Table 4 Diagnostic performance of the radiomics signature and visual assessment individually for detection of OAL from IOI

Radiomics signature Visual assessment

Primary cohort Validation cohort Radiologist 1 Radiologist 2

% (n) 95% CI % (n) 95% CI

Sensitivity (%) (n) 72.34% (34/47) 64.82%, 81.66% 72.97% (27/37) 64.90%, 79.22% 72.62% (61/84) 60.71% (51/84)

Specificity (%) (n) 76.60% (36/47) 68.11%, 82.23% 73.08% (19/26) 65.38%, 85.15% 72.60% (53/73) 64.38% (47/73)

False positive Rate (%) (n) 23.40% (11/47) 18.55%, 30.70% 26.92% (7/26) 20.45%, 33.40% 27.40% (20/73) 35.62% (26/73)

False negative Rate (%) (n) 27.66% (13/47) 20.09%, 36.42% 27.03% (10/37) 21.22%, 35.88% 27.38% (23/84) 39.29% (33/84)

PPV (%) (n) 75.56% (34/45) 66.36%, 82.55% 79.41% (27/34) 71.85%, 87.00% 75.31% (61/81) 66.23% (51/77)

NPV (%) (n) 73.47% (36/49) 61.30%, 80.45% 65.52% (19/29) 58.06%, 72.30% 69.74% (53/76) 58.75% (47/80)

Accuracy (%) (n) 74.47% (70/94) 65.50%, 81.43% 73.02% (46/63) 62.70%, 83.52% 72.61% (114/157) 62.42% (98/157)

AUC 0.74 0.65, 0.88 0.73 0.67, 0.85 --- ---

CI = confidence interval; PPV = positive predictive value; NPV = negative predictive value; AUC = area under receiver-operating characteristic curve

Fig. 2 Receiver-operating characteristic (ROC) curves for differentiation of OAL and IOI using the radiomics signature in the primary (a) and validation
cohorts (b). The areas under ROC curve (AUC) are 0.74 (a) and 0.73 (b) respectively

Eur Radiol



prognostic [44, 45] and predictive [46] potential, thereby
demonstrating that these features appear to give a good
representation of tumours for certain tasks. Eight hundred
six image features (including grey-level first-order statistics
and texture features with and without a wavelet filter) were
used in our study. Many reports have already shown grey-
level histograms and texture features of different imaging
modalities were useful in separating benign from malignant
masses [34, 35, 38, 47–50]. This study utilised the least
absolute shrinkage and selection operators (LASSO) for
the reduction of dimensionality. This shrinkage method
within linear regression models allows for automatic fea-
ture selection and produces sparser solutions [51]. Five de-
scriptive radiomics features were extracted (from MR im-
ages of OAL and IOI) to define our model to assess their
classification performance and robustness. These features
were also found to be useful in head and neck lesions re-
ported by other authors [38, 50].

It is interesting to note that most reports on GLCM entropy
after the wavelet filter (one of the selected features in our
study) showed higher values in malignant tumours than in
benign lesions [35, 38, 52]. However, our study showed the
opposite. In information theory, entropy is used tomeasure the

uncertainty or randomness of a random variable [53]. Hence,
homogenously enhancing lesions on post-contrast T1WI have
lower grey-level entropy compared with heterogeneously en-
hanced abnormalities. As we know, the histopathology of
OAL shows the proliferation of many monoclonal lympho-
cytes, which on MRI exhibits mild to moderate homogeneous
enhancement. On the other hand, IOI displays a more complex
variable combination of polymorphous infiltrations composed
of mature lymphocytes, plasma cells, eosinophils or macro-
phages together with reactive fibrosis [39]. It can therefore be
seen that the entropy values may provide further information
on histopathology, which may be potentially useful in differ-
entiating these two entities.

The predictive performance based on machine learning is
also compared with radiologist assessment for the first time.
The diagnostic performance of the radiomics signature was
better than that of the radiology resident. The accuracy of
the radiomics signature (in the primary and validation cohorts)
was similar to that of an experienced radiologist. The machine
learning classifier can make it to the level of an experienced
radiologist in the head and neck. Our radiomics signature ap-
peared stable as almost the same AUC value was obtained in
the primary and independent validation cohorts. In a word, the

Table 5 Location of wrongly
classified cases by the radiomics
signature and two radiologists

Wrongly classified cases Radiomics signature Radiologist 1
(16 years of experiences)

Radiologist 2
(4 years of experiences)

Intra-conal compartment (%) 2 (4.88%) 3 (6.98%) 5 (8.47%)

Extra-conal compartment (%) 9 (21.95%) 11 (25.58%) 15 (25.42%)

Preseptal compartment (%) 2 (4.88%) 4 (9.30%) 3 (5.08%)

Multi-compartments (%) 28 (68.29%) 25 (58.14%) 36 (61.02%)

Total 41 43 59

Primary cohort 24 (25.53%) 27 (28.72%) 37 (39.36%)

Validation cohort 17 (26.98%) 16 (25.40) 22 (34.92%)

Misclassified cases mainly involved multi-compartments or the extra-conal compartment by both the radiomics
signature and radiologists. However, more than half of cases wrongly classified by the radiomics signature were
different from those wrongly classified by the radiologists.

Fig. 3 A 58-year-old female with IOI in the right lacrimal gland
confirmed histologically. Axial T2-weighted image (a) and axial T1-
weighted post-contrast fat suppression image (b) show a well-defined
enlarged right lacrimal gland (white arrow) with moulding around the

eyeball. The lesion is slightly more hyper-intense relative to muscle on
T2WI and shows moderate homogenous enhancement. The case was
initially misdiagnosed as OAL by visual assessment and the correct
diagnosis was predicted by radiomics signature
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results showed that radiomics features derived from medical
images were useful in discriminating malignant OAL from
benign IOI. The above results are in agreement with other
studies [35, 38, 53, 54].

Curiously, both radiomics and radiologists have more dif-
ficulties in establishing the correct classification in cases in-
volving multi-compartments or lesions located in the extra-
conal compartment. However, more than half of cases wrong-
ly classified by the radiomics signature were different from
those by radiologists (Figs. 3 and 4). The reasons behind these
observations are not immediately clear. The literature shows
the ADC value to be of value in discriminating OAL from IOI
[20, 22, 25]. According to Sepahdari [55], there were signifi-
cant differences between the ADC values of orbital lymphoma
and inflammatory disease without overlap. Xu on the other
hand reported ADCs with a sensitivity of 91% and specificity
of 61% [25]. In comparison, our radiomics signature showed
lower sensitivity but higher specificity. Although our
radiomics signature has a lower sensitivity than the ADC,
the higher specificity gives a higher level of confidence in
making the correct distinction.

Although our results showed the potential usefulness of
the radiomics signature in differentiating OAL from IOI,
there are limitations. First, the study was retrospective in
nature and did not cover multi-modality medical images.
As described above, the inclusion of the ADC value may
further improve the utility of the radiomics signature in
separating OAL from IOI [20, 22, 25]. Furthermore, we
only used the predictive performance of the first- and sev-
eral second-order grey-level features. Other data and shape
features could be included to improve the effectiveness.
Second, our results may not be generalisable even though
we validated the diagnostic performance of our proposed
model in this study. Fruehwald-Pallamar et al. [38, 50] have
shown texture-based analysis to be useful in the discrimi-
nation of benign and malignant tumours when performed
on one scanner with the same protocol, while multicentre
studies were not recommended. Thus, the result of present

study should be confirmed in other data resources to make
the model more credible for generalisation.

In conclusion, our results demonstrate the potential use of
radiomics features in differentiating OAL from IOI. The pro-
posed objective model is not expected to replace tissue diag-
nosis, but may provide an additional tool for improving diag-
nostic accuracy in the day-to-day work of a radiologist. It may
be especially useful for less experienced radiologists or general
radiologists with no special training in head and neck imaging.
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Fig. 4 A 41-year-old female with IOI in the right lacrimal gland
confirmed histologically. Axial T2-weighted image (a) and axial T1-
weighted post-contrast fat suppression image (b) show an ill-defined
enlarged right lacrimal gland (white arrow) with moulding around the

eyeball. The lesion appeared mildly hypo-intense relative to muscle on
T2WI and shows moderate homogeneous enhancement. The case was
correctly diagnosed as IOI by visual assessment while wrongly
classified as OAL by the radiomics signature
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