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Abstract 1 

Purpose: To develop and validate a radiomics model for evaluating pathological complete response 2 

(pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC). 3 

Experimental Design: We enrolled 222 patients (152 in the primary cohort and 70 in the validation 4 

cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. 5 

All patients underwent T2-weighted and diffusion-weighted imaging before and after 6 

chemoradiotherapy; 2252 radiomic features were extracted from each patient pre- and post-treatment 7 

imaging. The 2-sample t-test and the least absolute shrinkage and selection operator regression were 8 

used for feature selection, whereupon a radiomics signature was built with support vector machines. 9 

Multivariable logistic regression analysis was then used to develop a radiomics model incorporating 10 

the radiomics signature and independent clinicopathological risk factors. The performance of the 11 

radiomics model was assessed by its calibration, discrimination, and clinical usefulness with 12 

independent validation. 13 

Results: The radiomics signature comprised 30 selected features and showed good discrimination 14 

performance in both the primary and validation cohorts. The individualized radiomics model, which 15 

incorporated the radiomics signature and tumor length, also showed good discrimination, with an 16 

area under the receiver operating characteristic curve of 0.9756 (95% confidence interval: 17 

0.9185–0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the 18 

clinical utility of the radiomics model. 19 

Conclusion: Using pre- and post-treatment MRI data, we developed a radiomics model with 20 

excellent performance for individualized, non-invasive prediction of pCR. This model may be used 21 

to identify LARC patients who can omit surgery after chemoradiotherapy. 22 

 23 
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Statement of translational relevance 1 

In the present study, we developed and validated a radiomics model for noninvasive, individualized 2 

evaluation of pathological complete response (pCR) in patients with locally advanced rectal cancer 3 

(LARC) based on pre- and post-treatment MRI data. The model’s validation data showed it to be 4 

robust in its ability to detect pCR. In addition to improved pCR detection, the model (and the derived 5 

nomogram that incorporates the radiomics signature and independent clinicopathologic risk factors) 6 

provides patients and doctors with an effective tool for evaluating chemoradiotherapeutic outcomes 7 

in patients with LARC and for determining further treatment plans. 8 

9 
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Introduction 1 

More than 100,000 people worldwide are diagnosed with rectal cancer annually; 70% are locally 2 

advanced rectal cancers (LARC). The current standard treatment for LARC is neoadjuvant 3 

chemoradiotherapy followed by total mesorectal excision (TME) (1-3). Approximately 15–27% of 4 

patients will show pathological complete response (pCR) to chemoradiotherapy (4,5), which led 5 

some investigators to question the use of TME in patients who achieve pCR. Several previous studies 6 

suggested that such patients usually have excellent long-term outcomes without surgery (6-9), and 7 

that the “wait and see” management approach that avoids surgery and preserves organs is a valid 8 

option (10). However, pCR can only be confirmed by histopathological examination of surgically 9 

resected specimens, and creating a noninvasive, validated method to safely and accurately identify 10 

pCR patients after chemoradiotherapy remains a major challenge. 11 

Medical imaging can noninvasively evaluate the therapeutic responses to chemoradiotherapy. 12 

Several investigators have proposed methods to identify good responders to chemoradiotherapy 13 

using various pre- or post-treatment imaging data including fludeoxyglucose positron emission 14 

tomography (11), T2-weighted MRI (T2WI) (12), dynamic contrast-enhanced MRI (13), and 15 

diffusion-weighted imaging (DWI) (14,15). Although these imaging methods have the potential to 16 

predict or evaluate responses to chemoradiotherapy, their accuracy in evaluating pCR is limited. In a 17 

recent small-sample study, radiomics analysis based on pre-treatment multi-parametric MRI 18 

performed well in predicting pCR after chemoradiotherapy, albeit without independent validation 19 

(16). These results suggested that pre-treatment multi-parametric MRI may be associated with 20 

response to chemoradiotherapy, and that radiomics analysis may greatly contribute to determining 21 

whether pCR has been achieved after chemoradiotherapy. 22 

Radiomics, which is based on advanced pattern recognition tools, involves the extraction of a large 23 

number of quantitative features from digital images to determine relationships between such features 24 

and the underlying pathophysiology (17,18). Radiomics analysis of large imaging datasets has been 25 

successfully employed in the field of oncology for noninvasively profiling tumor heterogeneity (19), 26 

and there is a growing interest within the field in devising maps that display the associations between 27 

tumor heterogeneity and imaging features (20). Recent advances in radiomics have enabled 28 

oncologists to deliver more personalized medical care that takes into account phenotypic subtypes 29 

(21), as well as to assess therapeutic responses using post-treatment imaging features (22,23). A 30 

recent radiomics study in patients with colorectal cancer proposed a nomogram to predict lymph 31 

node metastasis (24); this further confirmed the clinical value of radiomics. To that end, a radiomics 32 
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model for pCR detection could vastly improve treatment strategy planning. As pre-treatment MRI is 1 

associated with responses to chemoradiotherapy while post-treatment MRI directly reflects the 2 

post-treatment status, a radiomics model combining pre- and post-treatment MRI data may 3 

potentially predict pCR with accuracy. 4 

In the present study, we aimed to develop and validate a radiomics model for individualized pCR 5 

evaluation after chemoradiotherapy in patients with LARC. Consistent with clinical practice, our 6 

work combined pre- and post-treatment MRI data to non-invasively evaluate the outcomes of such 7 

patients and to select LARC patients for whom surgery can be avoided. 8 

Materials and Methods 9 

Patients 10 

This retrospective study was approved by the ethics committee of Beijing Cancer Hospital; the 11 

informed consent requirement was waived. All procedures performed in studies involving human 12 

participants were in accordance with the 1964 Helsinki declaration and its later amendments. A total 13 

of 222 patients who underwent surgical treatment between July 2010 and June 2015 were 14 

consecutively included in this study according to the following inclusion and exclusion criteria 15 

(Figure S1). The inclusion criteria were (i) biopsy-proven primary rectal adenocarcinoma; (ii) locally 16 

advanced disease determined by pre-treatment MRI (≥T3, and/or positive nodal status); (iii) received 17 

complete neoadjuvant chemoradiotherapy and no treatment has been done before; (iv) TME surgery 18 

was performed after completion of neoadjuvant chemoradiotherapy, after which pCR was confirmed 19 

by postoperative pathological examination; and (v) pre- and post-treatment MRI data obtained using 20 

the same 3-T MR scanner, including DWI and high-resolution T2WI. The exclusion criteria were (i) 21 

not completing neoadjuvant chemoradiotherapy; (ii) not undergoing surgery at our hospital, or pCR 22 

was not assessed; (iii) lack of DWI or high-resolution T2WI data; (iv) insufficient MRI quality to 23 

obtain measurements (e.g., owing to motion artifacts); (v) mucinous adenocarcinoma detected on 24 

pathological examination after TME; and (vi) lack of pre-surgical carcinoembryonic antigen (CEA) 25 

and CA19-9 data. Patients were allocated to primary and validation cohorts according to the time of 26 

surgery in a 2:1 ratio; the first 152 patients were allocated to the primary cohort and the subsequent 27 

70 were allocated to the validation cohort. The clinical characteristics of all patients are shown in 28 

Table 1; the data analysis flowchart of the study is shown in Figure 1. 29 
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Neoadjuvant Chemoradiotherapy Treatment 1 

All patients received preoperative chemoradiotherapy followed by TME. Intensity-modulated 2 

radiation therapy (IMRT) was administered using a Varian Rapidarc system (Varian Medical 3 

Systems, USA). The IMRT regimen comprised 22 fractions of 2.3 Gy (gross tumor volume, GtV) 4 

and 1.9 Gy (clinical target volume, CtV). A total dose of 50.6 Gy (GtV)/41.8 Gy (CtV) was 5 

administered 5 times per week over a period of 30 days (25,26). The GtV was defined as the volume 6 

of the primary tumor including the mesorectum. The CtV was defined as the primary tumor, 7 

mesorectal region, presacral region, mesorectal lymph nodes, lateral lymph nodes, internal iliac 8 

lymph node chain, and pelvic wall area. Capecitabine treatment was administered concurrently with 9 

IMRT at a dose of 825 mg/m
2
 orally twice per day. TME-based surgery was recommended 8 weeks 10 

after completing chemoradiotherapy. Adjuvant chemotherapy was routinely recommended; 11 

capecitabine alone, mFOLFOX6, or CapeOx were prescribed at the discretion of the physician. 12 

Pathological Assessment of Response 13 

Surgically resected specimens were histopathologically examined and analyzed by an experienced 14 

pathologist and were further reviewed by a dedicated gastrointestinal pathologist, both of whom were 15 

blinded to the MRI data; pCR was defined as the absence of viable tumor cells in the primary tumor 16 

and lymph nodes. 17 

MRI Data Acquisition and Retrieval Procedure 18 

All patients underwent MRIs at 2 time points: Within 1 week before the initiation of neoadjuvant 19 

chemoradiotherapy and within 1 week before surgery (defined as pre- and post-treatment MRI, 20 

respectively). All MRIs were performed with a 3.0-T MR scanner (Discovery 750; GE Healthcare) 21 

using an 8-channel phased array body coil in the supine position. To reduce colonic motility, 20 mg 22 

of scopolamine butylbromide was injected intramuscularly 30 min prior to MRI scanning. Patients 23 

were not required to undergo bowel preparation before the examination. All patients underwent a 24 

conventional rectal MRI protocol including DWI and axial, coronal, and sagittal T2-weighted images. 25 

DWI images were obtained using single-shot echo-planar imaging with 2 b-factors (0 and 1000 26 

s/mm
2
), and repetition time (TR) = 2800 ms, echo time (TE) = 70 ms, field of view (FOV) = 340 × 27 

340 mm, matrix = 256×256, thickness = 4.0 mm, and gap = 1.0 mm. Apparent diffusion coefficient 28 

(ADC) maps were generated automatically and included both b values in a monoexponential decay 29 

model. High resolution T2WI images were obtained using fast recovery fast spin echo with TR = 30 

5694 ms, TE = 110 ms, FOV = 180×180 mm, echo train length = 24, matrix = 288×256, thickness = 31 
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3.0 mm and gap = 0.3 mm. 1 

All MRI scans were retrieved from the picture archiving and communication system for further 2 

image feature extraction. 3 

Tumor Masking 4 

Pre- and post-treatment MRIs were analyzed by 2 radiologists (Dr. Zhang, a radiologist with 10 years 5 

of experience in rectal cancer imaging, and Dr. Shi, who has 7 years of experience in rectal cancer 6 

imaging); both were blinded to the histopathology results. The regions of interest (ROIs) were 7 

created manually via the itk-SNAP software (www.itksnap.org) using the T2WI and DWI data, 8 

including the whole tumor and excluding the intestinal lumen. ROIs of rectal tumors before and after 9 

therapy were manually drawn on each slice. Before chemoradiotherapy, ROIs were drawn along the 10 

contour of the tumor as visualized by T2WI (slightly high signal), containing the surrounding chords 11 

and burrs. ROIs were placed on the high signal intensity region on DWI (b-value of 1000 s/mm
2
) on 12 

each slice. If a highly suspicious tumor signal was still noted on T2WI (slightly high signal) after 13 

chemoradiotherapy, the ROI delineating criteria were the same as those before chemoradiotherapy. If 14 

a low, mixed-intensity, or any other non-normal rectal wall signal was detected in the tumor bed on 15 

T2WI (abnormal signal), the ROIs were drawn with contouring of the abnormal signal region. In 16 

cases where no abnormal signals were detected on T2WI (iso-intensity signal compared with the 17 

normal rectal wall), the ROIs were placed on the primary tumor bed region determined by T2WI 18 

before chemoradiotherapy. Due to the higher resolution of DWI compared to ADC maps, ROIs were 19 

detected with a b-value of 1000 s/mm
2
 first and then copied to the corresponding ADC maps. If a 20 

highly suspicious tumor signal (high signal) was noted on DWI, the ROIs were placed over the 21 

high-signal region. In cases where no high signal was detected on DWI compared to the normal 22 

rectal wall, the ROIs were placed on the primary tumor bed region as determined by DWI before 23 

chemoradiotherapy. Care was taken to avoid the magnetic susceptibility artifact during DWI. If no 24 

tumor signals were noted on post-chemoradiotherapy T2WI, then the ROI of DWI was outlined on 25 

the corresponding tumor bed region based on pre-treatment images. 26 

Radiomic Feature Extraction and Statistical Analysis 27 

MRI scans for each patient were normalized with z-scores in order to obtain a standard normal 28 

distribution of image intensities. Next, 3 groups of imaging features were extracted from the 29 

normalized pre- and post-treatment T2WI and DWI data with manually segmented ROIs: (i) 4 30 

statistical features, (ii) 43 voxel-intensity computational features, and (iii) 516 wavelet features. 31 
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Group 1 consisted of quantified tumor intensity characteristics with first-order statistics calculated 1 

from the histogram of all tumor intensities. Group 2 comprised textual features based on the 2 

quantification of intratumoral heterogeneity (i.e., differences in texture observed within the tumor 3 

volume); these features were all calculated using 2-dimensional analysis and averaged for all slices 4 

within the 3-dimensional tumor volume. Group 3 incorporated the calculated textural features from 5 

the wavelet decompositions of the original images, thereby focusing on the various frequency scales 6 

and different feature orientations within the tumor volume. All of these features have generally been 7 

used in previous radiomics studies (19,21,24). The final set comprised of 563 features for each 8 

modality (T2WI and DWI) per MRI scan, resulting in a total of 2252 radiomic features per patient. 9 

All feature-extracting algorithms were implemented using the Matlab software (Math Works Inc., 10 

Natick, MA); details are provided in the supporting information. Additionally, all statistical analyses 11 

were conducted with MatlabR2014b (Math Works Inc.). The reported statistical significance levels 12 

are all 2-sided, with the statistical significance set at 0.05. 13 

Inter- and Intra-observer Reproducibility Evaluation 14 

Inter-observer and intra-observer reproducibility of ROI detection and radiomic feature extraction 15 

were initially determined using the T2WI data of 80 consecutive patients undergoing investigation 16 

between July 2010 and May 2011 for ROI-based radiomic feature generation in a blinded fashion by 17 

Dr. Zhang and Dr. Shi. To assess intra-observer reproducibility, each reader repeated the generation 18 

of radiomic features twice within a 1-week period following the same procedure. Intra-class 19 

correlation coefficients were used to evaluate the intra- and inter-observer agreement in terms of 20 

feature extraction; we interpreted a coefficient of 0.81–1.00 as almost perfect agreement, 0.61–0.80 21 

as substantial agreement, 0.41–0.60 as moderate agreement, 0.21–0.40 as fair agreement, and 0–0.20 22 

as poor or no agreement (27). Many radiomic features described the shape and size of the ROIs; 23 

therefore, these values could also be used to evaluate the overall inter- and intra-observer 24 

reproducibility of the ROIs. 25 

Feature Selection Method 26 

To reduce over-fitting or any type of bias in our radiomics model, 2 feature selection steps were used. 27 

First, the best features based on univariate statistical tests (2-sample t-test) between pCR and 28 

non-pCR groups in the primary cohort were selected. Second, regularized multivariate logistic 29 

regression with the least absolute shrinkage and selection operator (LASSO) penalty was applied to 30 

the data of the primary cohort. With a linear combination of the selected features weighted by their 31 

respective coefficients, a model was used to estimate the chemoradiotherapy outcomes based on the 32 
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radiomic features. The model was defined as follows: 1 

 2 

Where y is 1 for patients with pCR and 0 for non-pCR patients; d is the number of features used in 3 

the model; jx (j = 1, 2, …, d) is the feature; j  ( j = 0, 1, 2, …, d) is the model parameter, and Ɛ is 4 

the error term. 5 

Using regularized regression to estimate the parameters of the model, feature selection (by forcing 6 

many parameters to zero value) can be performed simultaneously. The aim of this approach is to 7 

minimize the cost function: 8 

 9 

Where yi is the outcome of patient i, N is the number of patients, S is the sigmoid function, xij is the 10 

jth feature of the ith patient, and λ is the regularization parameter. The sigmoid function S is defined 11 

as follows: 12 

 13 

with the LASSO penalty  

d

1j j  applied, leading to sparse models by setting some parameters 14 

( j s) to zero. Features with greater contributions to the model are selected. 15 

Radiomics Signature Construction 16 

The support vector machine (SVM) method was used to discriminate whether a patient achieved pCR 17 

in this study. A radiomics score was calculated for each patient using an SVM model with linear 18 

kernel training based on the selected features. Leave-one-out cross-validation (LOOCV) was 19 

employed to determine the optimal value of the regularization parameter C using the primary cohort. 20 

The C value that maximized the area under the receiver operating characteristic curve (AUC) in the 21 

primary cohort was selected as the optimal regularization parameter. Specifically, we tested values of 22 

C ∈ [0.01, 1] with a step size of 0.02. After C was selected, the radiomics score for each patient in 23 

the validation cohort was calculated using the SVM model. The AUC, classification accuracy, 24 

positive predictive value (PPV), and negative predictive value (NPV) were calculated as metrics to 25 
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assess the quantitative discrimination performance of the radiomics signature in both the primary and 1 

validation cohorts. 2 

Development of the Individualized Radiomics Model 3 

Multivariable logistic regression analysis was conducted with the following clinical information: age, 4 

sex, post-treatment CEA, post-treatment CA19-9, histological grade, pre- and post-treatment tumor 5 

length, pre- and post-treatment tumor thickness obtained from oblique axial T2WI (TTOA), pre- and 6 

post-treatment invasion distance beyond the muscularis propria (IDBMP), pre- and post-treatment 7 

shortest distance between the mesorectal fascia and the outer edge of the tumor extension (SDBMT), 8 

pre- and post-treatment total number of the lymph nodes detected by DWI (NLN), pre- and 9 

post-treatment minor axis length of the largest lymph node (MALLLN), and radiomics signature. 10 

Backward step-wise selection was applied using the likelihood ratio test with Akaike’s information 11 

criterion employed as the stopping rule. 12 

Based on the multivariable logistic analysis of the aforementioned clinical parameters in the primary 13 

cohort, a radiomics model for pCR detection was constructed with the selected variates to provide a 14 

quantitative tool for clinical use. 15 

Apparent Performance and Validation of the Radiomics Model 16 

Calibration curves accompanied by the Hosmer-Lemeshow test were plotted to assess the radiomics 17 

model; a significance test statistic implied that the model was not perfectly calibrated (29). Harrell’s 18 

C-index, classification accuracy, PPV, and NPV were measured to quantify the model’s 19 

discriminatory performance. The model was subjected to bootstrapping validation (1,000 20 

bootstrapping resamples including feature selection, model construction, and performance estimation) 21 

to achieve a relatively corrected performance. 22 

The performance of the radiomics model was then tested in the validation cohort. The multivariable 23 

logistic regression formula devised based on the primary cohort was applied to the patients in the 24 

validation cohort, and the total points were calculated for each. Logistic regression was then 25 

performed using the total points of each patient in the validation cohort; the performance of the 26 

model was derived using regression analysis. 27 

Calibration curves were calculated to determine the agreement between the estimated probability of 28 

pCR and the actual outcomes (i.e., the pCR rate) in both the primary and validation cohorts. In the 29 

graph, the y-axis represents the actual rate of pCR while the x-axis represents the calculated 30 

probability of pCR. The diagonal blue line represents a perfect diagnosis by an ideal model and the 31 

Cancer Research. 
on September 22, 2017. © 2017 American Association forclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on September 22, 2017; DOI: 10.1158/1078-0432.CCR-17-1038 

http://clincancerres.aacrjournals.org/


12 
 

pink line represents the performance of the radiomics model; a fit that is closer to the diagonal blue 1 

line represents better performance. The calibration curve was drawn by plotting P̂  on the x-axis 2 

and
1

10c )](exp1[  LP   on the y-axis, where cP  is the actual probability, )ˆ(logit PL  , P̂  is 3 

the diagnosed probability, 0 is the corrected intercept, and 1 is the slope estimate. 4 

Clinical Use 5 

Decision curve analysis was conducted to determine the clinical usefulness of the radiomics model 6 

by quantifying the net benefits at different threshold probabilities in the validation dataset (30). 7 

Results 8 

Clinical Characteristics 9 

The clinical characteristics of the patients are summarized in Tables 1 and S1. There were no 10 

significant differences between the 2 cohorts in terms of pCR prevalence (17.11% and 17.14% in the 11 

primary and validation cohorts, respectively, p=0.567). There were no significant differences in other 12 

clinical characteristics between the primary and validation cohorts except for pre-treatment N stage 13 

and post-treatment tumor length (Table S1). Additionally, a few clinical characteristics were 14 

significantly different between the pCR and non-pCR groups (Table 1), including post-treatment T 15 

stage, post-treatment N stage, pre-treatment IDBMP, pre-treatment MALLLN, post-treatment TTOA, 16 

post-treatment IDBMP, and post-treatment SDBMT; all of these characteristics were included in the 17 

pCR evaluation model. 18 

Feature Selection and Radiomics Signature Construction 19 

Satisfactory inter- and intra-observer reproducibility of radiomic feature extraction was achieved 20 

(Supporting Information). 21 

To devise the radiomics signature, we first performed univariate analysis (2-sample t-tests) using the 22 

primary cohort as a pre-filter. To avoid eliminating highly discriminative features on multivariate 23 

analysis rather than on univariate analysis, more features than those that showed significant 24 

differences between the 2 groups were included as compensation. All features were sorted in 25 

increasing order of p-values, and the top 676 features (30%) were included in the next step of the 26 

analysis with p<0.0987. Next, 676 features were reduced to 30 potential predictors by applying 27 

regularized regression to the primary cohort with the LASSO penalty using LOOCV via minimum 28 

criteria (Figure 2). 29 
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Next, an SVM model with a linear kernel was constructed using the selected features based on the 1 

primary cohort. The best regularization parameter (C = 0.05) was determined by LOOCV. The 2 

resultant coefficients of the features used in calculating the radiomics score are shown in Table S2. 3 

The distributions of the radiomics scores and outcomes of chemoradiotherapy for each patient in the 4 

primary and validation cohorts are shown in Figure 3. 5 

Diagnostic Validation of the Radiomics Signature 6 

There was a significant difference in radiomics scores between pCR and non-pCR patients in the 7 

primary cohort (p<0.01); the same was true in the validation cohort (p<0.01). The radiomics 8 

signature yielded an AUC of 0.9744 (95% confidence interval [CI], 0.9642–0.9756) and a 9 

classification accuracy of 94.08% (95% CI, 93.19–94.79%) in the primary cohort, and an AUC of 10 

0.9799 (95% CI, 0.9780–0.9840) and a classification accuracy of 94.29% (95% CI, 94.21–95.61%) 11 

in the validation cohort. More importantly, the radiomics signature achieved a PPV of 86.96% (95% 12 

CI, 84.84–90.40%) in the primary cohort and 90.00% (95% CI, 89.60–99.40%) in the validation 13 

cohort. Detailed information on radiomics signature performance is shown in Table 2. 14 

Development, Performance, and Validation of the Individualized Radiomics 15 

Nomogram 16 

The radiomics signature and post-treatment tumor length were identified as independent factors 17 

predicting pCR (Tables S3 and S4). The model that incorporated these independent predictors was 18 

developed and presented as a nomogram (Figure 4). 19 

The calibration curve of the radiomics model estimating the probability of pCR demonstrated good 20 

agreement in the primary cohort (Figure 4). The Hosmer-Lemeshow test yielded a non-significant 21 

statistic (p = 0.9609), suggesting no departure from the perfect fit. The C-index for the radiomics 22 

model was 0.9799 (95% CI: 0.9517–1) within the primary cohort. 23 

Good performance was also observed for the probability of pCR in the validation cohort (Figure 4). 24 

The Hosmer-Lemeshow test yielded non-significant statistics for the radiomics model (p=0.5416). 25 

The radiomics model also achieved good discrimination performance with a C-index of 0.9756 (95% 26 

CI: 0.9417–1) and classification accuracy of 94.29% (95% CI: 91.85–97.11%). 27 

Clinical Use 28 

The decision curve analysis result for the radiomics model is shown in Figure 4. The decision curve 29 

showed relatively good performance for the model in terms of clinical application. While the 30 
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probability of achieving pCR ranges from 0 to 100%, using the proposed radiomics model to detect 1 

pCR shows a greater advantage than either the scheme in which all patients are assumed to achieve 2 

pCR or the scheme in which no patients are. 3 

Discussion 4 

In the present study, we developed and validated a radiomics model that incorporated pre- and 5 

post-treatment MRI data for noninvasive, individualized prediction of pCR in patients with LARC. 6 

The easy-to-use nomogram facilitated noninvasive estimation of pCR. The proposed radiomics 7 

model performs well and thereby provides an effective tool for clinical decision-making. 8 

The accurate detection of pCR using visual judgment (conventional MRI) remains challenging in 9 

clinical settings. Methods using multi-modality MRI (e.g. combining DWI and conventional MRI) 10 

(14,28-30) or positron emission tomography/CT (31) may also perform well; however, their levels of 11 

accuracy are not clinically reliable. Radiomics analysis integrates many high-dimensional imaging 12 

features used to evaluate pCR that are difficult to detect visually. Our proposed radiomics model 13 

based on these imaging features performed better than previously reported methods, and can 14 

therefore be useful in clinical decision-making as it provides radiologists and oncologists with a 15 

potential quantitative tool for individualized pCR prediction. 16 

To use our proposed radiomics model, radiologists must first delineate the ROI on pre- and 17 

post-treatment MRI scans (T2WI and DWI), after which the model allows for the calculation of the 18 

probability of pCR for each individual patient. Oncologists can then consider various factors, 19 

including the calculated probability of pCR and other retrievable clinical information, as well as their 20 

own clinical experience and the patient’s opinion, to make a comprehensive judgment on whether a 21 

wait-and-see treatment approach is warranted.  22 

The radiomics model combined pre- and post-treatment T2WI and DWI data of patients with LARC, 23 

and demonstrated adequate discrimination in both the primary and validation cohorts. There were 24 

significant differences in pre-treatment N stage and post-treatment tumor length between these 2 25 

cohorts. Nonetheless, the proposed radiomics model still performed appropriately and was 26 

well-calibrated. The results suggest that the radiomics model is robust in its evaluation of pCR and 27 

can be used in the clinical setting. Two recent studies investigated the pCR prediction capability of 28 

texture or radiomic features with DWI and multi-parametric MRI without independent validation; 29 

they derived AUCs less than 0.9 (15,16), which was a much lower value than the independent 30 

validation results obtained in our study. Specifically, our proposed radiomics model achieved a 31 

relatively high NPV and PPV in both the primary and validation cohorts. The high NPV indicated 32 
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that the non-pCR evaluation of the proposed model was reliable. Thus, surgeons may potentially 1 

forgo colonoscopies or other examinations meant to confirm the absence of residual lesions in 2 

non-pCR patients, and can thereby avoid excessive treatments that would ensue in the event that a 3 

pCR patient is incorrectly judged to be a non-pCR patient. Conversely, the high PPV suggests that 4 

our model can satisfactorily enable surgeons to screen out pCR patients, allowing for a “watch and 5 

wait” approach. Patients who were designated pCR using our model had a relatively high probability 6 

of achieving true pCR. 7 

An explanation for the robustness and improved performance of our radiomics model is the use of 8 

ADC maps derived from DWI. We obtained 2252 features from the MRI data of each patient; after 9 

feature selection with a 2-sample t-test and LASSO logistic regression, 30 potential predictors were 10 

further analyzed. Only 1 pre-treatment T2WI feature was selected with LASSO for the construction 11 

of the radiomics signature, suggesting that T2WI was not a good option for pCR assessment after 12 

chemoradiotherapy. Several studies have shown the difficulty of identifying pCR using the 13 

morphological features exposed by T2WI (14,28,32). As such morphological features reflect only 14 

limited information about residual cancer cells post-chemoradiotherapy, DWI may provide more 15 

useful details. As a functional imaging technique, DWI showed strong potential in detecting subtle 16 

cancer cell remnants (29), and added valuable information regarding the responses to 17 

chemoradiotherapy in patients with LARC (15,30). The use of DWI may improve the performance 18 

and confidence of radiologists in selecting patients with pCR after chemoradiotherapy compared with 19 

conventional T2WI (14,15,28). 20 

Another reason for the robustness of our model was the combination of pre- and post-treatment MRI 21 

data during analysis; this differed from what was done in a recent study (16). This combination is 22 

reflective of clinical practice and encompasses the entire diagnosis and treatment process. Most 23 

importantly, post-treatment MRI data represent the current status of the tumor after 24 

chemoradiotherapy; the data or information contained in post-treatment MRI scans correspond more 25 

closely to the surgical pathology. Hence, including post-treatment MRI data improves the model’s 26 

reliability in detecting pCR. Our results showed that 19 of the 30 selected radiomic features were 27 

from post-treatment MRI data. 28 

Moreover, the use of high-dimensional features also contributed to the performance of the model. 29 

Previous studies generally used low-dimensional information to evaluate the responses to 30 

chemoradiotherapy (23,28,29). However, in the present study, 90% (n=27) of the key features in the 31 

radiomics model were Gabor filtered wavelet features. Although the morphological and textural 32 
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features of tumors can easily be discerned, high-dimensional features are challenging to decipher 1 

with the naked eye (Figure S2), and ensuring that every clinician achieves a high level of expertise in 2 

gleaning detailed information from imaging features remains a significant obstacle. However, 3 

high-dimensional features hold more detailed information about the cancer and are more sensitive 4 

when assessing pCR, as was also demonstrated in a recent study (16). Hence, by incorporating these 5 

high-dimensional imaging features, a radiomics-based model can assist doctors in accurately 6 

identifying patients with pCR for whom a “wait and see” approach may be the most appropriate. 7 

We used a nomogram as an individualized tool for pCR detection, and assessed whether the 8 

radiomics nomogram-based decisions could benefit patients. Decision curve analysis was applied to 9 

examine the clinical consequences based on threshold probability, from which a net benefit (defined 10 

as the proportion of true positives minus the proportion of false positives, weighted by the relative 11 

harm of false positive and false negative results) could be derived (26,33). The decision curve 12 

analysis proved that, given a threshold probability ranging from 0% to 100%, using the radiomics 13 

model to detect chemoradiotherapy outcomes provides a greater advantage than either the treat-all or 14 

treat-none scheme. 15 

The use of the radiomics model not only provided an individualized tool for establishing a treatment 16 

plan, but also incorporated the radiomics signature and other clinical risk factors (age, sex, 17 

post-treatment CEA, post-treatment CA19-9, pre- and post-treatment tumor length, pre- and 18 

post-treatment TTOA, pre- and post-treatment IDBMP, pre- and post-treatment SDBMT, pre- and 19 

post-treatment NLN, and pre- and post-treatment MALLLN). The constructed radiomics model 20 

comprised of the radiomics signature and post-treatment tumor length. To the best of our knowledge, 21 

the post-treatment tumor length has never been proposed for pCR detection. Although its β value in 22 

the multivariate regression model was minuscule compared to that of the radiomics signature, 23 

post-treatment tumor length may provide complementary information for precise evaluation of pCR 24 

using the radiomics model. The potential association between post-treatment tumor length and pCR 25 

could be further investigated in future studies. 26 

There were some limitations of the study. First, the sample size of patients with pCR was small 27 

relative to the entire cohort. Second, all the patients were from a single center. Although we 28 

categorized the patients into independent primary and validation cohorts according to their surgery 29 

dates, the model may perform differently if multicenter datasets with different parameters are used. 30 

A much larger dataset from multiple centers, with a considerably large sample of patients with pCR, 31 

ought to be investigated to validate the robustness and reproducibility of our proposed radiomics 32 
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model. 1 

Conclusion 2 

We propose a validated and easy-to-use radiomics model based on pre- and post-treatment MRI data 3 

for the individualized detection of pCR in patients with LARC. This model provides a noninvasive 4 

and convenient method to guide treatment planning in patients with LARC after they have undergone 5 

chemoradiotherapy. 6 
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Table 1. Characteristics of Patients in the Primary and Validation Cohorts 1 

Characteristic 
Primary cohort 

P 
Validation cohort 

P 
pCR non-pCR pCR non-pCR 

Age, mean ± SD, years 59.96±12.32 55.98±8.971 0.057 64.08±7.267 57.91±10.753 0.062 

Gender (%)   0.371   0.764 

Male 13(50%) 75(59.52%)  9(75%) 41(70.69%)  

Female 13(50%) 51(40.48%)  3(25%) 17(29.31%)  

Post-treatment CRT CEA (%)   0.086   0.459 

Normal 26(100%) 108(85.71%)  12(100%) 51(87.93%)  

Abnormal 0(0%) 18(14.29%)  0(0%) 7(12.07%)  

Post-treatment CRT CA19-9 (%)   0.971   1 

Normal 25(96.15%) 118(93.65%)  12(100%) 55(94.83%)  

Abnormal 1(3.85%) 8(6.35%)  0(0%) 3(5.17%)  

Histologic grade (%)   0.381   0.167 

I 0(0%) 0(0%)  0(0%) 2(3.45%)  

II 22(84.62%) 113(89.68%)  8(66.67%) 48(82.76%)  

III 2(7.69%) 10(7.94%)  2(16.67%) 4(6.90%)  

IV 2(7.69%) 3(2.38%)  1(8.33%) 4(6.90%)  

V 0(0%) 0(0%)  1(8.33%) 0(0%)  

Pre-treatment T stage (%)   0.287   1 

T0 0(0%) 0(0%)  0(0%) 0(0%)  

T1 0(0%) 0(0%)  0(0%) 0(0%)  

T2 6(23.08%) 15(11.90%)  2(16.67%) 8(13.80%)  

T3 19(73.08%) 96(76.19%)  10(83.33%) 45(77.59%)  

T4a 1(3.85%) 6(4.76%)  0(0%) 3(5.17%)  

T4b 0(0%) 9(7.14%)  0(0%) 2(3.45%)  

Pre-treatment N stage (%)   0.299   0.439 

N0 2(7.69%) 9(7.14%)  1(8.33%) 2(3.45%)  

N1a 2(7.69%) 5(3.97%)  2(16.67%) 5(8.62%)  

N1b 5(19.23%) 28(22.22%)  1(8.83%) 5(8.62%)  

N2a 3(11.54%) 35(27.78%)  3(0.25%) 10(17.24%)  

N2b 14(53.85%) 49(38.89%)  5(41.67%) 36(62.07%)  

Post-treatment T stage (%)   <0.001*   <0.001* 

T0 26(100%) 6(4.76%)  12(100%) 1(1.72%)  

T1 0(0%) 7(5.56%)  0(0%) 4(6.90%)  

T2 0(0%) 54(42.86%)  0(0%) 23(39.66%)  

T3 0(0%) 57(45.24%)  0(0%) 30(51.72%)  

T4a 0(0%) 1(0.79%)  0(0%) 0(0%)  
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T4b 0(0%) 1(0.79%)  0(0%) 0(0%)  

Post-treatment N stage (%)   0.020
*
   0.295 

N0 26(100%) 86(68.25%)  12(100%) 37(63.80%)  

N1a 0(0%) 23(18.25%)  0(0%) 7(12.07%)  

N1b 0(0%) 11(8.73%)  0(0%) 8(13.79%)  

N2a 0(0%) 3(2.38%)  0(0%) 5(8.62%)  

N2b 0(0%) 3(2.38%)  0(0%) 1(1.72%)  

Pre-treatment TL 41.38±15.118 45.94±13.784 0.133 41.83±12.372 45.53±13.507 0.384 

Pre-treatment TTOA 14.27±4.006 15.77±5.141 0.163 15.50±4.275 17.28±5.486 0.295 

Pre-treatment IDBMP 2.65±2.497 5.27±4.384 <0.01* 4.67±7.215 6.17±6.344 0.467 

Pre-treatment SDBMT 5.85±5.951 4.04±3.844 0.051 3.75±2.768 4.66±5.857 0.604 

Pre-treatment NLN 12.38±5.838 12.45±5.790 0.957 10.00±4.880 12.53±4.946 0.110 

Pre-treatment MALLLN 5.88±3.548 6.59±3.371 0.339 4.83±1.642 7.16±3.583 0.032* 

Post-treatment TL 27.42±9.892 29.89±10.211 0.262 22.25±6.440 27.33±9.267 0.076 

Post-treatment TTOA 8.50±2.997 9.71±3.237 0.08 6.75±2.006 9.71±3.195 <0.01* 

Post-treatment IDBMP 0.85±1.541 2.37±3.209 0.019* 1.50±1.977 2.74±3.832 0.280 

Post-treatment SDBMT 7.62±5.224 5.35±4.670 0.029* 7.33±4.141 6.88±6.644 0.821 

Post-treatment NLN 7.23±3.840 7.69±3.914 0.585 5.67±2.871 7.19±3.390 0.152 

Post-treatment MALLLN 3.54±1.702 4.40±3.124 0.177 2.92±1.443 4.26±2.475 0.075 

Radiomics Score 

(mean ± SD) 
0.7017±0.2687 0.0995±0.1128 <0.01* 0.6957±0.2756 0.0815±0.1041 <0.01* 

Note: Chi-Square or Fisher Exact tests, as appropriate, were used to compare the differences in categorical variables (Gender, Post-treatment CEA, Post-treatment 1 
CA19-9, Histologic grade, Pre- and Post-treatment T stage, and Pre- and Post-treatment N stage), while a two-sample t-test was used to compare the differences in 2 
age, Radiomics Score, Pre- and Post-treatment TL, Pre- and Post-treatment TTOA, Pre- and Post-treatment IDBMP, Pre- and Post-treatment SDBMT, Pre- and 3 
Post-treatment NLN and Pre- and Post-treatment MALLLN. Laboratory analysis of CEA and CA 19-9 were done via routine blood tests within 1 week before surgery. 4 
The threshold value for CEA level was ≤5 ng/mL and > 5 ng/mL and the threshold value for CA 19-9 level was ≤39 U/mL and > 39 U/mL, according to the normal 5 
range used in clinics.  6 
Abbreviations: pCR, pathological complete response; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; SD, standard deviation; ADC, apparent 7 
diffusion coefficient. Tumor’s length, TL; Tumor’s thickness obtained from oblique axial T2WI, TTOA; The invasion distance beyond the muscularis propria, 8 
IDBMP; The shortest distance between the mesorectal fascia and the outer edge of the tumor extension, SDBMT; Total number of the lymph nodes detected by DWI, 9 
NLN; The minor axis length of the largest lymph node, MALLLN. 10 
* P < 0.05 11 
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Table 2. Performance of the radiomics signature and radiomics model 1 

Metrics 
 Radiomics Signature  Radiomics Model 

 Primary cohort Validation cohort  Primary cohort Validation cohort 

Accuracy (95%)  94.08% (93.19% to 94.79%) 94.29% (94.21% to 95.61%)  96.05% (94.67%, 97.59%) 94.29% (91.85%, 97.11%) 

AUC (95%)  0.9744 (0.9642 to 0.9756) 0.9799 (0.9780 to 0.9840)  0.9799 (0.9517 to 1) 0.9756 (0.9417 to 1) 

PPV (95%)  86.96% (84.84% to 90.40%) 90.00% (89.60% to 99.40%)  91.67% (86.56%, 97.06%) 90.00% (79.51%, 99.12%) 

NPV (95%)  95.35% (94.39% to 95.81%) 95.00% (94.87% to 95.17%)  96.88% (95.42%, 98.34%) 95.00% (92.19%, 97.65%) 

Abbreviations: AUC, area under ROC curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value 2 

 3 
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Figure Legends 1 

Figure 1. Flowchart of the study. 2 

With manually segmented tumor masks, we first extracted 2252 quantitative radiomic features from 3 

masked pre- and post-treatment T2 weighted imaging and diffusion-weighted imaging data; the 4 

general view of the feature extraction algorithm is shown. Next, 2 feature selection steps were 5 

applied on the extracted features with a 2- sample t-test and the least absolute shrinkage and selection 6 

operator (LASSO). Thereafter, a radiomics signature was constructed with the selected features using 7 

the linear kernel support vector machine model. Finally, the radiomics signature and clinical factors 8 

were incorporated into a nomogram for individual evaluation. ROC, receiver operating characteristic. 9 

Figure 2. Tuning parameter selection for feature selection (λ) and support vector machine 10 

model construction (C). 11 

(A) Feature selection with least absolute shrinkage and selection operator using leave-one-out 12 

cross-validation (LOOCV) via minimum criteria. The misclassification error was plotted versus log 13 

(λ). A dotted vertical line was drawn at the optimal value by using the minimum criteria. A λ value 14 

of 0.014189 was chosen according to the LOOCV. (B) The optimal value regularization parameter C 15 

selection for the SVM model construction using LOOCV. The area under the receiver operating 16 

characteristic curve (AUC) was plotted vs. C. A dotted vertical line was drawn at the optimal value. 17 

The C value of 0.05 was chosen according to the LOOCV. 18 

Figure 3. Radiomic features and performance of the radiomics signature. 19 

(A) Heat map of 30 selected radiomic features. Each row corresponds to 1 radiomic feature, and each 20 

column corresponds to 1 patient (separately grouped for the primary vs. validation cohort and the 21 

pathological complete response [pCR] vs. non-pCR group). (B) The radiomics score for each patient 22 

and receiver operating characteristic (ROC) curve in the primary cohort. (C) The radiomics score for 23 

each patient and ROC curve in the validation cohort. 24 

Figure 4. Nomogram developed with the radiomics model and calibration curves, as well as the 25 

decision curve derived from the radiomics model. 26 

(A) The developed radiomics nomogram. (B) Calibration curves of the radiomics model in the 27 

primary and validation cohorts. Calibration curves depict the calibration of each model in terms of 28 

the agreement between the predicted probability of pathological complete response (pCR) and actual 29 

outcomes of the pCR rate. The y-axis represents the actual rate of pCR. The x-axis represents the 30 

predicted probability of pCR. The diagonal blue line represents a perfect prediction by an ideal 31 
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model. The pink line represents the performance of the radiomics model, of which a closer fit to the 1 

diagonal blue line represents a better prediction. (C) Decision curve analysis for the radiomics model. 2 

The y-axis measures the net benefit. The pink line represents the radiomics model. The blue line 3 

represents the assumption that all patients showed pCR. The black line represents the assumption that 4 

no patients showed pCR. 5 

 6 
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