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ARTICLE INFO ABSTRACT

Purpose: To evaluate the performance of a multi-parametric MRI (mp-MRI)-based radiomics signature for dis-
criminating between clinically significant prostate cancer (csPCa) and insignificant PCa (ciPCa).

Materials and methods: Two hundred and eighty patients with pathology-proven PCa were enrolled and were
randomly divided into training and test cohorts. Eight hundred and nineteen radiomics features were extracted
from mp-MRI for each patient. The minority group in the training cohort was balanced via the synthetic minority
over-sampling technique (SMOTE) method. We used minimum-redundancy maximum-relevance (mnRMR) se-
lection and the LASSO algorithm for feature selection and radiomics signature building. The classification
performance of the radiomics signature for csPCa and ciPCa was evaluated by receiver operating characteristic
curve analysis in the training and test cohorts.

Results: Nine features were selected for the radiomics signature building. Significant differences in the radiomics
signature existed between the csPCa and ciPCa groups in both the training and test cohorts (p < 0.01 for both).
The AUC, sensitivity and specificity of the radiomics signature were 0.872 (95% CI: 0.823 —0.921), 0.883, and
0.753, respectively, in the training cohort, and 0.823 (95% CI: 0.669 —0.976), 0.841, and 0.727, respectively, in
the test cohort.

Conclusion: Mp-MRI-based radiomics signature have the potential to noninvasively discriminate between csPCa
and ciPCa.
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1. Introduction overtreatment of some patients.

Multi-parametric MRI (mp-MRI) plays a crucial role in the man-

Prostate cancer (PCa) is the second most frequently diagnosed male
cancer worldwide [1]. Transrectal ultrasound (TRUS)-guided prostate
biopsy is the routine diagnostic method in male patients who present
with an elevated serum prostate-specific antigen (PSA). However,
TRUS-guided biopsy may bring significant side effects, including
bleeding, pain or infection. Some patients may undergo unnecessary
biopsies because clinically insignificant PCa (ciPCa) may be detected.
Moreover, the identification of ciPCa by TRUS-biopsy may result in

agement of PCa and has been suggested as a promising non-invasive
imaging modality in the detection of PCa due to its functional and
anatomical information [2]. Prebiopsy mp-MRI may predict the pre-
sence of csPCa, which could reduce the number of unnecessary biopsies
for patients with ciPCa who are suspected of having PCa due to elevated
PSA levels. Mp-MRI has high impact for both clinicians and patients to
reduce the overdiagnosis and overtreatment of ciPCa and to schedule
high-risk csPCa patients for biopsy or other treatment.
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Radiomics is a new method of image analysis that can extract large
amounts of quantitative and objective image features from radiologic
images and select stable and clinically relevant radiomics biomarkers
for disease evaluation. Many previous studies have suggested the great
potentials of radiomics, especially in quantifying and monitoring tu-
mour characteristics [3-10]. Radiomics had also been extended to the
evaluation of PCa. However, the potential value of mp-MRI-based
radiomics in predicting csPCa has not been fully investigated.

The purpose of our study was to investigate whether mp-MRI based
radiomics could detect csPCa in patients with suspected PCa.

2. Materials and methods
2.1. Patients

This retrospective study was approved by the local review board.
Between October 2013 and May 2017, consecutive patients who were
pathology-proven to have PCa and received mp-MRI examination with
the same MRI scanner prior to TRUS-guided systemic biopsy were in-
cluded in this study. Patients were excluded for any of the following
reasons: (a) patients with prior therapy including hormonal, irradia-
tion, cryotherapy, or surgery; (b) poor quality of the MRI images due to
movement artifacts, susceptibility artifacts or the presence of hip im-
plants; (c) no visible lesion on mp-MRI images; (d) the clinical data,
such as serum PSA level, were incomplete; (e) combined with other
tumors and invaded to prostate tissue such as bladder cancer, rectal
cancer. Ultimately, 280 patients were enrolled in this study. The in-
cluded patients were randomly divided into training cohort (n = 187)
and test cohort (n = 93). Patients’ characteristics in the training and
test cohorts are shown in Table 1. According to previous studies and
prostate guideline, csPCa was defined as a Gleason score of 3 + 4 or
higher in at least one biopsy core [2,11,12].

2.2. Pathological evaluation

All patients underwent both a TRUS-guided 12-core systematic
biopsy and an MRI-targeted biopsy using the cognitive registration
technique after the MRI examination. Cognitive-targeted biopsy had
been suggested to be an effective method for PCa detection, and its
accuracy for PCa detection is similar to that of MRI/ultrasound fusion
biopsy [13,14]. The biopsy was performed by a single experienced
urologist with 20 years of experience using an ultrasound system (Hawk
2102, BK Medical, Denmark). The dominant lesion suspicious for PCa
was described according to its location, size, shape, and signal char-
acteristics on MRI reports. The biopsy operator reviewed the MRI re-
ports and attempted to specifically target the dominant lesions using
cognitive registration. Cores were individually labelled according to

Table 1
Characteristics of patients in the training and test cohorts.
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their location. Each specimen was histologically analysed by an ex-
perienced pathologist who has over 15 years of experience.

2.3. MRI protocol

All examinations were performed with the same 3.0 T MRI scanner
(Skyra, Siemens Healthcare, Erlangen, Germany), using an eighteen-
channel abdomen coil above and a spine coil underneath the pelvis. The
protocol included transverse T1-weighted turbo spin-echo sequence,
axial, sagittal, and coronal T2-weighted turbo spin-echo sequence, and
transverse diffusion weighted imaging (DWI). DWI was acquired with a
minimum b-value of 0s/mm? and maximum b-value of 1500s/mm?.
Apparent diffusion coefficient (ADC) maps were automatically re-
constructed using a mono-exponential fit model from DWI images using
the following formula:

S(b)/Sy = exp(—b-ADC)

where S(b) is the signal intensity at a particular b-value, and Sy is
the signal intensity at b = 0s/mm?. ADC is the diffusion coefficient of
the mono-exponential model. The detailed parameters of the MR se-
quences used are shown in Supplement S1.2.4. MRI segmentation and
radiomics feature extraction

The ITK-SNAP software (version 3.4.0; www.itksnap.org) was used
for manual segmentation. Preoperative transverse T2-weighted imaging
(T2WI), ADC maps and DWI (b = 1500s/mm?, DWI;5,,) images were
obtained for image analysis. The three-dimensional volume of interest
(VOI) covering the dominant tumor was delineated by stacking regions
of interest slice-by-slice on the ADC map and transverse T2WI on each
slice. As the ADC maps were automatically reconstructed from DWI
images, the ADC maps had the same locations as the DWI images.
Therefore, the segmented VOIs were copied from the ADC maps to the
DWI; 500 images. Manual segmentation of the tumors on the images was
performed initially by a radiologist. Then, all the segmentations were
verified by a senior radiologist with 20 years of experience.

Feature extraction was completed using MATLAB software (version
2014a; MathWorks, Natick, MA). Three-dimensional features were ex-
tracted from transverse T2WI, DWI; 590 and ADC sequences. The feature
extraction method is described in detail in the Supplement S2.

2.4. Statistical analysis

The feature selection and radiomics signature construction process
in the training cohort was performed using the following steps. The
Mann-Whitney U test for non-normally distributed features or the in-
dependent t-test for normally distributed features was first performed to
screen for significant features and redundant features, indicated by
Spearman’s correlation coefficient > 0.8, were eliminated [15]. Be-
cause class imbalance can influence the classification performance, the

Characteristics Training cohort (n = 187) Test cohort (n = 93)
CsPCa (n = 160) CiPCa (n = 27) CsPCa (n = 81) CiPCa (n = 12)
Age (years) 68.8 = 8.3 71.5 = 8.4 70.3 = 7.8 71.6 = 5.7
PSA, No.
<4ng/ml 1 1 0 1
4-10ng/ml 15 4 5
> 10 ng/ml 124 10 71 6
Position, No.
Peripheral zone 112 16 54 8
Transitional zone 48 11 27 4
Gleason score, No.
6 None 27 None 12
7 55 None 22 None
8 58 None 31 None
=9 47 None 28 None
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synthetic minority over-sampling technique (SMOTE) was performed in
the training cohort [16]. Then, the remaining features were ranked
using the minimum-redundancy maximum -relevance (mRMR) algo-
rithm by calculating the mutual information (MI) between features and
csPCa. The mRMR ranks the input features by maximizing the MI with
respect to the csPCa group and minimizing the average MI of higher
ranked features. This technique allows an efficient selection of relevant
and non-redundant features. In this study, only 10 of the highest-
ranking features in mRMR selection were selected. The least absolute
shrinkage and selection operator (LASSO) logistic regression model
using 10-fold cross-validation was adopted for further feature selection.
Features with non-zero coefficients were selected from the candidate
features and were combined linearly to construct a radiomics signature
[171.

To test the radiomics signature in a real experiment, SMOTE was not
performed in the test cohort. The difference in radiomics signature
between the csPCa and ciPCa groups were compared using the Mann-
Whitney U test in the training and test cohorts. The predictive ability of
the radiomics signature was evaluated using the receiver operating
characteristic (ROC) curve. The area under the curve (AUC), sensitivity
and specificity were derived in both the training and test cohorts. The
framework for the radiomics workflow is shown in Fig. 1.

The statistical analyses were performed using R software (version
3.3.4; http://www.Rproject.org). The following R packages were used:
the “corrplot” package was used to calculate Spearman’s correlation
coefficient; the “DMwR” package was used to perform the SMOTE al-
gorithm; the “mRMRe” package was used to implement the mRMR al-
gorithm; the “glmnet” was used to perform the LASSO logistic regres-
sion model; and the “pROC” package was used to construct the ROC
curve. A two-sided p-value < 0.05 was taken to indicate statistical
significance for all statistical analyses. To control the false positive rate
in multiple comparisons, the false discovery rate adjusted p-value was
used in the Mann-Whitney U test and the independent t-test during
feature selection.

3. Results

A total of 273 quantitative features were extracted from the VOI of
each of the MRI series and its corresponding filtered results. In the
current study, 819 radiomics features for each patient were extracted
from mp-MRI (T2WI, ADC and DWI;5¢).

Eight insignificant features were eliminated first. After eliminating
the redundant features using the threshold value of Spearman’s corre-
lation coefficient > 0.80, 93 features with low correlation remained.

T2WI T2WI

European Journal of Radiology 115 (2019) 16-21

The correlation matrix heatmaps of features in the training cohort be-
fore and after correlation filtering are shown in Fig. 2. The selection
result of the remaining features for mRMR selection is shown in Table 2.
Through the 10-fold cross-validation of the LASSO algorithm, 9 features
(three features from T2WI, 2 features from DWI and 4 features from
ADC maps) with non-zero coefficients were included for radiomics
signature construction. The process of feature selection using the LASSO
algorithm is shown in Fig. 3. The calculation formula of the radiomics
signature construction is shown in Table 3. The contribution of features
to the radiomic signature is shown in Fig. 4.

There were significant differences in the radiomics signature be-
tween the csPCa and ciPCa groups in both the training and test cohorts
(p < 0.01 for both). The ROC curves of the radiomics signature in
discriminating csPCa from ciPCa in both the training and test cohorts
are shown in Fig. 5. The AUC, sensitivity and specificity of the radio-
mics signature were 0.872 (95% CI: 0.823 —0.9212), 0.883, and 0.753,
respectively, in the training cohort, and 0.823 (95% CI: 0.669 —0.976),
0.841, and 0.727, respectively, in test cohort.

4. Discussion

Noninvasively discriminating between csPCa and ciPCa is of great
significance. Providing both functional and anatomical information,
mp-MRI has been applied for the prediction of csPCa in many studies. In
this study, we adopted advanced radiomics to prostate MRI for the
prediction of csPCa. A mp-MRI-based radiomics signature for dis-
criminating between csPCa and ciPCa was constructed and tested.

While the current PSA-and-biopsy based diagnosis has reduced
mortality associated with PCa, some ciPCa may be overdiagnosed.
Previous studies estimated that approximately 40% of the positive
screening cases and more than 3% of the screening cases may experi-
ence overdiagnosis of PCa [18,19]. Overdiagnosis of ciPCa would lead
to overtreatment [20], which may introduce the side-effects of ag-
gressive treatment (e.g. erectile dysfunction and urinary incontinence).
Noninvasively, prebiopsy discriminating csPCa from ciPCa may reduce
unnecessary biopsies and minimize overdiagnosis/overtreatment of
ciPCa. The possibility of side-effects and overdiagnosis associated with
PSA-and-biopsy based diagnosis warrants new effective and non-in-
vasive methods for prediction of csPCa and ciPCa.

Providing a large amount of anatomical and functional information,
mp-MRI is a promising method for the non-invasive evaluation of PCa.
Many previous studies have evaluated the performance of mp-MRI-
based models for prediction csPCa [11,21-24]. Yim JH et al. combined
Prostate Imaging Reporting and Data System scores and the tumour
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Fig. 1. The framework for the radiomics workflow. (a) Patient scanned with preoperative mp-MRI. (b) The dominate tumor was delineated by stacking up regions of
interest slice-by-slice on the ADC map and transverse T2WI image on each slice. The segmented volume of interest was copied from ADC maps to DWI; 5o0 images. (c)
High-throughput radiomics features were extracted from mp-MRI. (d) Data analysis for feature selection, radiomics signature construction and testing.
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b

Fig. 2. Correlation matrix heatmaps of features in the training cohort before (a) and after (b) correlation filtering. Before correlation filtering, a mass of redundant

features with high correlation coefficients existed.

Table 2 Table 3
Features selected from mRMR. Calculation formula for radiomics signature.
Features mRMR scores  Groups Filters Variables Coefficients
ADC_X0_fos_minimum 0.131979 First-order NA Intercept 0.77495115
statistics ADC_X0_fos_minimum 0.34119165
feature T2WI_X4_fos_median 0.35146236
T2WI_X4_fos_median 0.036235 Wavelet feature Xy T2WI_X1_GLRLM_HGLRE 0.30077846
T2WI_X1_GLRLM_HGLRE 0.013669 Wavelet feature Xy, ADC _Sphericity 0.32456821
ADC _Sphericity 0.022909 Shape-and size- NA ADC_X4_GLCM_cluster_shade 0.31770603
based feature T2WI_X4_GLCM_maximum_probability 0.24512478
ADC_X4_GLCM_cluster_shade 0.038574 Wavelet feature  X;y ADC_X1_GLCM_inverse_variance 0.31825114
T2WI_X4_GLCM_maximum_probability ~ 0.021016 Wavelet feature Xy DWI_X0_GLRLM_LGLRE 0.0630764
ADC_X1_GLCM._inverse_variance 0.019298 Wavelet feature X ADC_X2_GLRLM_SRHGLE 0.08281175
DWI_X0_GLRLM_LGLRE 0.010225 Statistics-based ~ NA
textural feature NOTE. ADC: apparent diffusion coefficient; T2WI: T2-weighted imaging;
ADC X2 GLRLM_SRHGLE 0.013616 Wavelet feature Xy, fos: first-order statistics features; GLRLM: gray-level run-length texture
DWI_X2_GLCM._cluster_tendency 0.003729 Wavelet feature Xy,

NOTE. mRMR: minimum-redundancy maximum-relevance; ADC: apparent
diffusion coefficient; T2WI: T2-weighted imaging; fos: first-order statistics
features; GLRLM: gray-level run-length texture matrix; GLCM: grey-level co-
occurrence matrix; NA: not applicable.

ADC value reaching an AUC of 0.803 for predicting patients with ciPCa
[21]. In another study by Pim J. van et al., they established a mp-MRI-
based prediction model for csPCa detection [24]. The AUC of the ad-
vanced model in predicting csPCa was 0.88. In a recent study by Costa
ND et al., the mean ADC values were explored for discriminating be-
tween csPCa and ciPCa. The AUC for the peripheral zone PCa was 0.91,
and the AUC for the transition zone PCa was 0.70. Although some
positive results for the MRI-based classifier in distinguishing csPCa from
ciPCa have been reported, most previous studies included limited MRI

10 10 10 10 10 10 10 10 9 9 9 6 5 2 10 10

matrix; GLCM: grey-level co-occurrence matrix.

features that may not fully explore potential information. Contrary to
the above studies, a large amount of quantitative features were in-
cluded in our study, and the most effective features were selected for
the construction of the prediction model. In current study, a total of 819
radiomics features from mp-MRI images were extracted.

The newly proposed radiomics method has been successfully ap-
plied in many diseases and has been extended to PCa detection and
evaluation [25-27]. A previous study by Algohary et al. evaluated the
performance of mp-MRI based radiomics features in identifying the
presence or absence of csPCa [26]. Their results suggested a role for
mp-MRI-based radiomics features in predicting the presence of csPCa.
In contrast to the study by Algohary et al., our study focused on dis-
tinguishing between csPCa and ciPCa rather than malignant and normal

Fig. 3. Feature selection using the LASSO al-
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Fig. 5. ROC curves of the radiomics signature in the training (a) and test (b)
cohorts. The AUCs in the training and test cohorts were 0.872 (95% CI:
0.823 —-0.9212) and 0.823 (95% CI: 0.669 —0.976), respectively.

prostate regions. Another study by Shiradkar et al. explored the
radiomics features from bi-parametric MRI in predicting the biochem-
ical recurrence of PCa [27]. Their results illustrated that radiomics
features from pretreatment bi-parametric MRI can be used to predict
biochemical recurrence of PCa after therapy and may help identify
patients who would benefit from adjuvant therapy. Radiomics has
shown great potential value for the diagnosis and evaluation of PCa.
However, no study has fully evaluated the potential value of mp-MRI-
based radiomics signature in predicting csPCa. In this study, we ex-
tracted high-throughput imaging features from mp-MRI and con-
structed a mp-MRI-based radiomics signature for the prediction of
csPCa. The result of this study provides a new mp-MRI tool for dis-
criminating between csPCa and ciPCa. Our results showed that the
radiomics signature provides relatively high efficiency for
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discriminating csPCa and ciPCa in both training and test cohorts
(AUC = 0.872 and 0.823, respectively). The sensitivity and specificity
of the radiomics signature for prediction csPCa were 0.841and 0.727,
respectively, in the test cohort.

There are usually inter-group imbalances in medical data. This
imbalance could cause significant bias for the constructed radiomics
signature in the training process and would also affect the prediction
performance of the radiomics signature in the testing process. In the
current study, the proportion of the csPCa and ciPCa is significantly
imbalanced (160 vs 27). To alleviate the effect of the imbalance in the
training cohort, we adopted the powerful and effective SMOTE algo-
rithm in the training cohort. However, the SMOTE algorithm was not
performed in the test cohort because we wanted to test the radiomics
signature in a real experiment. Another aspect that should be pointed
out is the quality assurance for MRI scanner. The current data were
gathered over a time period of approximately 3.5 years; therefore, the
quality assurance for the MRI scanner was important for this long-
duration study. In our situation, the after-sale service department of
Siemens Healthineers regularly provided specialized quality assurance
for the MRI scanner used in the current study.

There are some limitations in this study. First, this is a retrospective
study from a single centre. Further data from multiple centres are
needed to validate our primary results. Second, systematic biopsy and
cognitive-targeted biopsy were used as the reference standard rather
than whole-mount serial section. The use of whole-mount histo-
pathology improves the accuracy of the agreement between MR images
and histopathology. However, it is unreasonable to expect that all of
our subjects would undergo prostatectomy, especially for ciPCa pa-
tients. Additionally, only including patients who underwent prosta-
tectomy would also introduce selection bias. Third, patients with no
visible lesions on mp-MRI were excluded in current study. This is be-
cause we could not delineate the tumour region during MRI segmen-
tation for these patients. Therefore, some selection bias may be in-
troduced. Despite the limitations of our study, we believe that our
methodical strategies provide sufficient validity for the principal results
of our primary study.

In conclusion, a mp-MRI-based radiomics signature for dis-
criminating csPCa from ciPCa was constructed and validated in present
study. The radiomics signature from mp-MRI provided a non-invasive
and quantitative method. Further studies are warranted to validate our
primary results. This radiomics signature may help clinicians facilitate
prebiopsy and pre-treatment risk stratification.
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