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A B S T R A C T   

Background: Gleason score (GS) is one of the most critical predictors of diagnosing prostate cancer (PCa). The 
prostate gland, including both lesions and their microenvironment, may contain more comprehensive infor
mation about the PCa. We aimed to investigate the potential of prostate gland radiomic features in identifying 
Gleason scores (GS) < 7, = 7, and >7. Methods: We retrospectively examined preoperative magnetic resonance 
imaging (MRI) results, clinical data, and postoperative pathological findings from 489 PCa patients. The three- 
dimensional (3D) and two-dimensional (2D) radiomic features were extracted from the manually segmented 3D 
prostate gland and its maximum 2D layer on MRI, respectively. Significant features were selected, and sequence 
signatures were then developed via multi-class linear regression (MLR) accordingly. Subsequently, 2D and 3D 
radiomic models were constructed by applying MLR to the combination of the sequence signatures, respectively. 
The stability of the significant features was discussed by their average ranking in the other 30 random cohorts. 
Based on our distance matrix algorithm, we generated different regions of interest to simulate the manual 
segmentation biases and discuss the model’s tolerance to them. Results: Our 2D model reached a C-index of 0.728 
and an average area under the receiver operating characteristic curve of 0.794 in the validation cohort. The 
corresponding key features were stable, with an average ranking of the top 8.352% in 30 random cohorts, and 
the model could tolerate a segmentation boundary deviation of 2 mm without significant performance degra
dation. Conclusion: 2D prostate-gland-MRI-based radiomic features showed stable potential in identifying GS.   

1. Introduction 

Prostate cancer (PCa) ranked second in the fatal cancer causes for 
men in 2019 as the most commonly diagnosed male cancer in the United 
States [1,2]. The previous study reported that early detection of 

asymptomatic PCa could reduce mortality by 20% [3,4]. 
National Comprehensive Cancer Network [5] demonstrated that the 

Gleason score (GS) is one of the most critical predictors of diagnosing 
PCa, according to which patients can be divided into three prognosis 
groups with GS < 7, GS = 7, and GS > 7. Previous studies have 
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consistently demonstrated that GS is closely related to PCa progression, 
outcomes, and mortality [6]. Relatively conservative treatment strate
gies are beneficial for PCa patients with GS < 7 [7], and months of 
neoadjuvant androgen deprivation therapy (ADT) may be recommended 
in patients with GS = 7 [8], while those with GS > 7 would consider 
receiving neoadjuvant ADT for more than two years [9]. Therefore, it is 
essential to accurately determine the GS before surgery. However, GS 
can only be determined via needle biopsy or surgical pathology. The 
transrectal and transperineal approaches are the two primary biopsy 
methods for the diagnosis of PCa [10]. The transrectal approach is more 
frequently performed by urologists, however, it was been associated 
with inadequately sampling anterior prostate regions, high 
false-negative rates, and high infection rates [11,12]. It has been shown 
that the transperineal approach can help improve sampling of the 
anterior and apical regions in case of repeat biopsy with lower infection 
rates [13,14]. Nevertheless, more than 68% of PCa was multi-lesioned 
and had scattered distribution in the prostate gland, especially for 
early PCa with a small volume showing multifocal, heterogeneous, and 
dispersed growth. The local biopsy cannot reflect the overall situation of 
the PCa. Whether increasing the number of cores equates to a higher 
cancer yield is debatable, but both the transrectal and transperineal 
biopsies approaches would tend to have increasing potential complica
tions of pain, erectile dysfunction, and urinary retention [15]. There
fore, non-invasive and precise GS prediction methods are needed. 

Research has indicated that standard magnetic resonance (MR) im
aging (MRI) findings are correlated with GS obtained via pathological 
analysis [16–18]. Multiparametric MRI (mpMRI), including 
T1-weighted imaging, T2-weighted imaging (T2WI), diffusion-weighted 
imaging (DWI), and dynamic contrast-enhanced (DCE) MRI, has 
emerged as an important tool in the early diagnosing of PCa [19–21] and 
is usually considered as the best imaging method for evaluating PCa [22, 
23]. Besides, considering the controversial value and high cost of DCE 
MRI for identifying PCa, biparametric MRI (bpMRI) protocol that only 
employs the T2WI and DWI sequences has also been generalized applied 
[24,25]. Several studies have demonstrated that radiomic analysis, 
which extracts large amounts of quantitative MRI information, can be 
used to identify PCa, distinguish GS, and determine aggressiveness [17, 
18,26,27]. However, it’s a pity that these previous studies relied on 
complex lesion region segmentation, which was tended to ignore scat
tered and obscure lesions and be time-consuming. 

A series of studies, getting rid of the complex segmentation of the 
tumor lesions and concentrating on the prostate gland, demonstrated the 
predictive values of the information about the prostate gland for GS, 
such as the volume of the whole prostate gland (VPG), and so on [28, 
29]. Compared with the tumor region, the prostate gland includes both 
lesions and their microenvironment, which may contain more compre
hensive information about the tumor considering the characteristics of 
multiple lesions and scattered distribution of PCa. There have been 
studies analyzing the whole organ instead of a specific lesion, such as a 
whole lung radiomic analysis on the chest radiograph [30,31]. Inspired 
by these studies, we attempted to explore the ability of the prostate 
gland as the region of interest (ROI) in GS prediction and constructed a 
radiomic predictive model. Meanwhile, we introduced a distance matrix 
based algorithm for simulating the manual segmentation deviation and 
investigating the model’s anti-interference ability against it. 

2. Materials and methods 

2.1. Patients and MRI data acquisition 

We collected patients with PCa treated at Wuxi People’s Hospital 
from June 2008 to January 2018. The requirement for informed consent 
was waived by the Ethics Committee of the hospital. 

All patients were scanned at a single institution with 3.0-T MR 
scanners (MAGNETOM Verio, Siemens Healthcare, Erlangen, Germany) 
using pelvic phased-array coils. To guarantee the image quality, the MR 

machine was checked on by a hospital radiological technician every 
month and was further maintained by a Siemens engineer on a 
bimonthly basis. For every standard prostatic MRI examination con
ducted in Wuxi People’s Hospital, three types of MRI data were evalu
ated: T2-weighted imaging (T2WI), Diffusion-weighted imaging (DWI) 
and its derivative apparent diffusion coefficient (ADC) imaging. In our 
study, the MRI scanning was guided to be strictly consistent with the 
latest guidelines [32] with the scanned b-values of series values from 
0 to high value step-by-step (from 2008 to 2015: b-values were 0, 50, 
100, 150, 200, 400, 600 and 800 s/mm2; from 2015 to 2018: b-values 
were 0, 50, 100, 150, 200, 600, 800 and 1600 s/mm2). The present study 
used a b-value of 800 s/mm2 uniformly, considering enrolling as much 
as patients to help reduce the randomness of experimental results. 

Inclusion criteria were as follows: (a) availability of pathological 
results and preoperative MRI data; (b) interval between image capture 
and pathological examination of no more than six weeks. (c) Gleason 
scores of different lesions (from systemic puncture with 12+X needle 
biopsy, or from postoperative pathology of patients underwent radical 
prostatectomy) were the same. The exclusion criteria were as follows: 
(a) patients whose critical clinical information was unavailable; (b) the 
MRI was too unclear to delineate the boundary of the prostate gland. 

Under the constraints of inclusion and exclusion criteria, a total of 
489 eligible patients were finally studied. In our study, 2/3 of the total 
samples were randomly selected as the primary cohort (n = 326), while 
the remaining patients were included in the validation cohort (n = 163). 
The study design is shown in Fig. 1. 

2.2. Clinical characteristics 

Since that VPG has been reported to be related to PCa, we added it as 
a potential clinical characteristic to be analyzed. Our candidate clinical 
predictors thus included age, prostate-specific antigen (PSA) levels, the 
density of PSA (PSAD), and VPG. Among the parameters derived from 
serum PSA values [33], PSAD possesses the greatest diagnostic efficacy 
and is closely related to the pathological severity of 
aggressive/high-grade PCa [34] (Supplement I). In our study, the values 
of PSAD were calculated according to the values of PSA and VPG. 

vPSAD =
vPSA

vVPG
(1)  

where vPSAD and vPSAD are the values of PSAD and PSA, respectively. vVPG 
is the value of VPG obtained in T2WI [35]. 

We used the non-parameteric test to retain the significant charac
teristics to construct a clinical model (CM) for predicting GS via the 
multi-class linear regression (MLR). 

2.3. Region of interest masking and image resampling 

An experienced radiologist manually denoted the entire prostate 
gland as a ROI in all three types of 3D MR images utilizing ITK-SNAP 
version 3.4.0 (www.itksnap.org). The prostate gland was roughly out
lined according to the Prostate Imaging - Reporting and Data System 
(PIRADS) v2 [19], and anatomical landmarks such as the urethra, 
ejaculatory ducts, and prostatic capsule were used to determine the ROI, 
while the surrounding fat, muscle tissue, large blood vessels, and veins 
were excluded. We also performed the interrater and intrarater reli
ability studies, which showed differences between different observers 
had little influence on our study (Supplement II. Manual Segmentation 
Evaluation). 

Since 3D and 2D features may lead to a difference in the predictive 
performance, we extracted 3D radiomic features from 3D ROIs and 2D 
radiomic features from the 2D ROIs that is the single transverse MRI slice 
covering the largest area of the 3D ROI [36]. It is worth noting that the 
pixel spacing of the ROI was normalized with an average spacing via 
three order B-Spline interpolation to obtain the isotropic volumes. The 
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average pixel spacings in the x, y, and z directions were 0.629 
mm/voxel, 0.629 mm/voxel, and 3.909 mm/voxel in the T2WI 
sequence, respectively, and 1.522 mm/voxel, 1.522 mm/voxel, and 
4.539 mm/voxel in the DWI and ADC sequences, respectively. Accord
ingly, the 3D ROIs were resampled to the isotropic ones with the target 
pixel spacing of 1 mm/voxel in the T2WI sequence and 2 mm/voxel in 
DWI and ADC sequences, while the 2D ROIs were resampled with the 
target pixel spacing of 0.63 mm/voxel in the T2WI sequence and 1.52 
mm/voxel in the DWI and ADC sequences. 

2.4. Feature discovery and sequence signature building 

Radiomic features were extracted using the package of Pyradiomics 
[37] in Python (version 3.6; https://www.python.org/) for Windows. 
For each MRI sequence of each case, we extracted three groups of fea
tures from ROIs, including the first-order, shape, and textural features, 
which have been used in several previous studies [38–41]. First-order 
features calculated from the histogram of all tumour intensities 
described the intensity characteristics, such as energy, entropy, and so 
on. Shape features quantitatively described the 3D size and shape of the 
tumour. Texture features were based on the quantification of tumour 
heterogeneity. 

In this study, to make the datasets have a unified order of the 
magnitude, features in both the primary and validation cohorts were 
scaled using the Z-score technique with the same mean and standard 
deviation calculated from the primary cohort. Meanwhile, the null and 
useless values were also processed. The detailed data pre-process is 
shown in the section "Supplement III. Data Pre-Process". 

Radiomic features showing strong correlations with GS need to be 
selected. Considering the wide variety of types and properties of the 
radiomic features, we applied the non-parameteric Kruskal-Wallis test 
[42], the minimum redundancy-maximum relevance (mRMR) test [43], 
and the sequential backward elimination (SBE) [44] algorithm per
formed within the MLR analysis to select the key features. Specifically, 
features with p-values less than 0.05 in the Kruskal-Wallis test, rankings 
of top 30 in the mRMR test [45], and p-values less than 0.05 in the 

multivariate analysis employed with the SBE algorithm were selected to 
construct the sequence signatures. Then, we analyzed the selected key 
features to develop the radiomic single sequence signature using MLR as 
follows [46]. 

Sk =
∑Nk

i=1
wk,iFk,i + vk, k = 1, 2, 3 (2)  

where Sk is the sequence signature constructed from the kth sequence of 
MRI (k1: T2WI, k2: ADC, k3: DWI), Fk,i is the ith significant radiomic 
feature of the kth MRI sequence, and wk,i is the coefficient for it. Nk and vk 
is the number of significant features and the bias of the kth MRI sequence. 

2.5. Model construction and validation 

Based on the sequence signatures constructed from T2WI, ADC, and 
DWI, radiomic models were constructed via MLR. Specifically, a 2D 
radiomic model (2D-PGRFM) and a 3D radiomic model (3D-PGRFM) 
were correspondingly constructed employing 2D or 3D radiomic 
sequence signatures. The formula is as follows: 

M =
∑3

k=1
λkSk + β (3)  

where M is the radiomic model, Sk is the sequence signature constructed 
from the kth sequence of MRI, λk and β are the coefficient and bias for the 
sequence signature Sk, which is determined via the MLR. 

It is noticed that all the strategies used for 3D and 2D PGRFM are the 
samely designed during the feature extraction, selection and model 
construction, respectively. In the same way, the combined model inte
grating both the radiomic key features and clinc information was also 
constructed to explore the radiomic model’s benefit for the clinical 
information. 

C-index was calculated to evaluate the performance of the model on 
identifying GS < 7 vs. GS = 7 vs. GS > 7. To further evaluate the model’s 
performance, logistic regression (LR) analyses were used to show the 
predictive performance of the radiomic models for GS subgroups (GS < 7 
vs. GS ⩾ 7, GS ⩽ 7 vs. GS > 7) based on the current three-way classifi
cation results (Fig. 2). The area under the receiver operating 

Fig. 1. Exploring the potential predictive power of the prostate gland radiomic features for GS. (a) MRI acquisition. (b) ROI obtaintion, including the 3D manual 
segmented ROI by radiologists, the 2D segmentation, and the generated ROIs with a distance of 1 mm and 2 mm. (c) 3D and 2D radiomic features extracted from the 
3D ROI and 2D ROI, respectively, including shape, texture, and first-order features. (d) Features were selected, and the sequence-level signatures were constructed, 
based on which models were further developed via linear regression analysis. (e) The stability of key features was validated in the other 30 random primary cohorts 
and exhibited in the raincloud plot. 3D model, 2D model of the manual ROI, and the model of the generated ROI were evaluated using ROC curves, decision curves, 
and calibration curves. ROI: Region of the interest; PCa: prostate cancer; MRI: magnetic resonance imaging; ROC: receiver operating characteristic; 2D: two- 
dimensional; 3D: three-dimensional. 
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characteristic (ROC) curve (AUC), specificity (SP), sensitivity (SE), and 
accuracy (ACC) values were reported separately in the two subgroups of 
the GS, and the optimum cutoff point was determined in the primary 
cohort using the Youden index. To validate the robustness of the 
radiomic models, the corresponding quantitative metrics were calcu
lated in the validation cohort. We also analyzed the model performance 
using decision curve analysis (DCA) and calibration curves, and the 
former aimed to identify the maximum net benefit while the latter re
flected the performance of each model according to the consistency 
between the predicted and observed GS. 

2.6. Feature stability in random datasets 

The partitioning of the cohorts may influence unstable radiomic 
features. To explore the stability of our key radiomic features utilized for 
PGRFM, we randomly split the whole dataset into 30 pairs of the pri
mary and validation cohorts (clinical characteristics had no significant 
differences between them). For these 30 random primary cohorts, we 
performed the same Kruskal-Wallis test and mRMR as we used for our 
PGRFM, after which the features rankings were acquired. Accordingly, 
the matching rankings of our PGRFM key radiomic features were sum
marized and calculated as follows. 

Ri,k =
1

Nk

∑Nk

j=0

Ri,j,k(x)
Mi,k

(4)  

Rk =
1
30

∑30

i=0
Ri,k (5)  

where Nk is the number of significant features in the kth sequence, Ri,j, 

k(x) is the ranking of the jth significant feature of the kth sequence 
signature in the ith random primary cohort, Mi,k is the number of selected 
features participating in mRMR ranking for the kth sequence in the ith 
random primary cohort, Ri,k is the average ranking of the kth MRI 
sequence key features in the ith random primary cohort, and Rk is the 
average ranking of the kth MRI sequence features within the 30 random 
primary cohorts. 

We also used the raincloud plots [47] to exhibit the ranking distri
butions for each key feature and their average rankings in each 
sequence. The raincloud plot could show the data distribution with a 
cloud diagram showing nuclear density distribution, a marker showing 

the median of the sample, a marker indicating the interquartile range, 
and all the sample points. 

2.7. Tolerance for segmentation deviation 

Subjective differences are common and inevitable for manual seg
mentation, even for simpler gland segmentation than lesion segmenta
tion. To explore the tolerance of our model for gland segmentation 
deviation, we introduced a distance matrix based algorithm, via which 
we obtained the automatically derived expanded and indented ROIs 
according to the required pixel distance to the original radiologist’s 
manually segmented ROI on the maximum MRI layer. The algorithm 
details are as follows:  

1. Obtain the distance matrix between the original manually segmented 
ROI and its surrounding pixels. 

Rm =
{(

xR
k , y

R
k

)⃒
⃒k = 0, 1,…,𝒩 ROI

}
(6)  

Im = {(x, y)|0 ≤ x < 𝒲, 0 ≤ y < ℋ} (7)  

where Rm is the original manually annotated ROI on the maximum layer 
Im, 𝒩 ROI is the number of pixels in Rm, 

(
xR

k , y
R
k
)

is the coordinate of the kth 
pixel in Rm, 𝒲 and ℋ represent the width and height of the area around 
the Im to be analyzed. 

Taking into the variations in pixel spacing among MRIs, we calcu
lated euclidean norm rather than the physical distance. 

d(x, y) = min
{⃦
⃦(x, y),

(
xR

k , y
R
k

)⃦
⃦

2

}
,

k = 0, 1,…,𝒩 R O I
(8)  

where d(x, y) is the distance between pixel (x, y) and Rm, which was 
defined as the minimum euclidean norm of (x, y) to all the pixels in Rm.  

2. Obtain the derived ROIs according to the required physical distance, 
such as 1 mm, 2 mm, etc. Taking into the variation in pixel spacing 
between MRIs, we first convert the required physical distance to the 
required number of pixels. 

Dpixel =
Dphysical

Savg
(9) 

Fig. 2. The technical route of the radiomic construction and evaluation.  
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Δexpand =
{
(x, y)|d(x, y)≤ 2Dpixel ∧ (x, y)∕∈Rm

}
(10)  

Δintend =
{
(x, y)|d(x, y)≤ 2Dpixel ∧ (x, y) ∈Rm

}
(11)  

Rexpand = Rm ∪ Δexpand (12)  

Rintend = Rm − Δintend (13)  

where Dphysical is the required physical distance to be expanded or 
intended to Rm, Savg is the average pixel spacing, Dpixel is the corre
sponding required pixel distance, Rexpand is the expanded ROI by 
expanding region Δexpand based on the required distance to the Rm, and 
Rintend is the indented ROI by indenting region Δintend based on the 
required distance to the Rm. 

2.8. Influence of unbalanced data distribution 

Our datasets had an unbalanced distribution between the GS < 7 and 
GS ⩾ 7 subgroups, which is common for clinic data and may have an 
influence on our model’s predictive performance. Therefore, we con
ducted the random oversampling (ROS) on the primary cohort to 
explore the model performance benefit from the balanced datasets. 

2.9. Statistical analysis 

Chi-squared and Kruskal-Wallis tests were used to assess the differ
ences among the discrete and continuously variable groups, respec
tively. Two-sided statistical tests were conducted, and statistical 
significance was determined when the p-value was less than 0.05. R 
software for Windows (version 4.0.5; https://www.r-project.org) was 
applied for statistical analyses. 

3. Results 

3.1. Clinical characteristics and CM performance 

Patients’ clinical characteristics are summarized in Table 1. As 
shown in Table 1, PSAD and PSA exhibited p < 0.05 in both the primary 
and validation cohorts and were used to analyze the predictive power of 
the CM. However, age and VPG were not used since they were identified 
as insignificant factors (primary cohort: age: p = 0.355, volume: p =
0.155; validation cohort: age: p = 0.988, volume: p = 0.492). 

The CM, including PSA and PSAD, exhibited poor performance in 
both the primary and validation cohorts. Specifically, it got a C-index of 

0.682, an average AUC of 0.771, and an average ACC of 0.639, an 
average specificity of 0.738, and an average sensitivity of 0.623 (GS < 7 
vs. GS ⩾ 7: AUC = 0.790, specificity = 0.800, sensitivity = 0.595; GS ⩽ 7 
vs. GS > 7: AUC = 0.752, specificity = 0.675, sensitivity = 0.651) in the 
validation cohort (Table 2). The ROC curves for CM of GS subtypes are 
shown in Fig. 3. 

3.2. Feature discovery and radiomic signature construction 

The initial 3D radiomic feature set contained 4,227 features from the 
manually segmented ROIs, including 1,409 features extracted in each 
MRI sequence: 14 shape features, 1,125 textural features, and 270 first- 
order statistical features. The initial 2D radiomic feature set contained 
3,138 features from the maximum layer of the manually segmented 
ROIs, including 1,046 features in each MRI sequence: 23 shape features, 
825 textural features, and 198 first-order statistical features. 

After the feature selection, 3, 5, 6 key features were determined for 
T2WI, ADC, and DWI of 3D ROIs respectively, while 3, 3, 4 key features 
were correspondingly determined for 2D ROIs. The detailed key features 
are shown in Supplement Table A1. The calculation of the sequence 
signatures and radiomic score of models are shown in Supplement IV. 

3.3. PGRFM and predictive potential 

For 3D-PGRFM, the C-index reached 0.753 (0.793–0.832), an 
average ACC of 0.729, and an average AUC of 0.800 with an average 
specificity of 0.781 and an average sensitivity of 0.703 in the primary 
cohort, and it obtained a C-index of 0.706 (0.767–0.827), an average 
ACC of 0.724, and an average AUC of 0.781 with an average specificity 
of 0.704 and an average sensitivity of 0.727 in the validation cohort in 
predicting GS < 7 vs. GS = 7 vs. GS > 7 (Table 2, Fig. 3). 

For 2D-PGRFM, the C-index reached 0.714 (0.757–0.800), an 
average ACC of 0.701, and an average AUC of 0.776 with an average 
specificity of 0.798 and an average sensitivity of 0.674 in the primary 
cohort, and it earned a C-index of 0.728 (0.784–0.840), an average ACC 
of 0.727, and an average AUC of 0.794 with an average specificity of 
0.765 and an average sensitivity of 0.743 in the validation cohort in 
predicting GS < 7 vs. GS = 7 vs. GS > 7, as shown in Table 2 and Fig. 3. 

When compared with CM, both 2D-PGRFM and 3D-PGRFM had 
statistically different improvements in identifying GS ⩽ 7 vs. GS > 7 (p 
< 0.05), although insignificant differences were found in identifying GS 
< 7 vs. GS ⩾ 7. The calibration curves and decision curves for PGRFM are 
shown in Fig. 4. The calibration curves of PGRFM predicting GS of the 
patients with prostate cancer demonstrated good agreements between 
the observations and predictions in both the primary and validation 

Table 1 
Clinical characteristics of patients in the primary and validation cohorts.  

Characteristics Primary cohort Difference between 
cohorts (p-value) 

Validation cohort 

GS 
< 7 

GS 
= 7 

GS 
> 7 

mean ± SD significance 
analysis (p-value)  

GS 
< 7 

GS 
= 7 

GS 
> 7 

mean ± SD significance 
analysis (p-value) 

No. of patients 38 136 152   0.398 15 62 86   
Age (y)  –  72.479 ±

7.447 
0.355 0.630  –  73.411 ±

6.643 
0.988 

VPG (mL)  –  35.565 ±
20.234 

0.155 0.513  –  35.018 ±
17.621 

0.492 

PSA (< 10ng/mL) 16 31 15 94.653 ±
350.985 

* 0.533 6 11 8 82.815 ±
276.488 

* 

PSA (⩾10ng /mL) 22 105 137    9 51 78   
PSAD 
(< 0.45ng/mL2)

23 45 28 2.951 ±
9.193 

* 0.507 10 18 10 2.269 ±
4.952 

* 

PSAD 
(⩾0.45ng /mL2)

15 91 124    5 44 76   

GS: Gleason score; SD: standard deviation; PSA: prostate-specific antigen; PSAD: PSA density; VPG: volume of the prostate gland; *: p-value < 0.05; Chi-squared and 
Kruskal-Wallis tests were used to assess the differences among the discrete and continuous variable groups, respectively.  
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Table 2 
Model performance on the manual ROI.  

Evaluation GS < 7 vs. GS = 7 vs. GS > 7 GS < 7 vs. GS ⩾ 7 GS ⩽ 7 vs. GS > 7 

C-index AUC SP SE ACC AUC SP SE ACC 

CM          
Primary cohort 0.625 0.712 0.790 0.552 0.580 0.683 0.695 0.651 0.675  

(0.677–0.729) (0.620–0.804)    (0.625–0.741)    
Validation cohort 0.682 0.790 0.800 0.595 0.614 0.752 0.675 0.651 0.663  

(0.746–0.811) (0.687–0.893)    (0.677–0.826)    
3D-PGRFM          
Primary cohort 0.753 0.781 0.763 0.688 0.696 0.819 0.799 0.717 0.761  

(0.793–0.832) (0.712–0.851)    (0.774–0.865)    
Validation cohort 0.706 0.778 0.667 0.710 0.706 0.784 0.740 0.744 0.742  

(0.767–0.827) (0.672–0.884)    (0.713–0.855)    
2D-PGRFM          
Primary cohort 0.714 0.778 0.842 0.656 0.678 0.773 0.753 0.691 0.724  

(0.757–0.800) (0.708–0.848)    (0.722–0.824)    
Validation cohort 0.728 0.781 0.867 0.730 0.742 0.806 0.662 0.756 0.712  

(0.784–0.840) (0.681–0.880)    (0.739–0.872)    
2D-PGRFM þ Clinic          
Primary cohort 0.720 0.781 0.842 0.667 0.687 0.779 0.759 0.691 0.727  

(0.763–0.805) (0.712–0.850)    (0.729–0.829)    
Validation cohort 0.731 0.783 0.867 0.730 0.742 0.809 0.649 0.744 0.699  

(0.786–0.842) (0.685–0.881)    (0.743–0.875)    
ROSRM          
Primary cohort 0.737 0.786 0.855 0.645 0.715 0.807 0.806 0.704 0.772  

(0.769–0.802) (0.743–0.828)    (0.764–0.849)    
Validation cohort 0.727 0.765 0.849 0.692 0.744 0.835 0.704 0.779 0.729  

(0.768–0.810) (0.706–0.824)    (0.783–0.886)    

GS: Gleason score; AUC: area under the receiver operating characteristic (ROC) curve; SP: specificity; SE: sensitivity; CM: clinical model; PGRFM: prostate gland 
radiomic features based model; ROSRM: radiomic model constructed by features after the random oversampling. 

Fig. 3. ROC curves for predicting (a–b) GS < 7 vs. GS ⩾ 7 and (c–d) GS ⩽ 7 vs. GS > 7. (a) and (c) are in the primary cohort, and (b) and (d) are in the validation 
cohort. GS: Gleason score; CM: clinical model; PGRFM: radiomic GS prediction model; ROC: receiver operating characteristic. 
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cohorts. In addition, whether for prediction of GS < 7 vs. GS ⩾ 7 or GS ⩽ 
7 vs. GS > 7, the decision curves displayed relatively good performance 
for the PGRFM in clinical applications. Although the probability of 
achieving accurate prediction ranges from 0% to 100%, the decision 
curves of PGRFM showed a greater advantage than either the scheme in 
which all patients were assumed to achieve accurate prediction or the 
scheme in which no patients were. 

In terms of a comprehensive evaluation, 2D-PGRFM got a relatively 
better performence than 3D-PGRFM, and we therefore carried out 
following the analyses with the 2D-PGRFM. The combined model con
structed by the 2D radiomic key features and clinic information (2D- 
PGRFM + Clinic) got a little improved C-index than 2D-PGRFM in the 
validation cohort (2D-PGRFM + Clinic: 0.731 (0.786–0.842), 2D- 
PGRFM: 0.728 (0.784–0.840)), while the other results were similar to 
2D-PGRFM. 

3.4. Feature stability in random datasets 

The detailed distributions of the key feature rankings for 2D-PGRFM 
are shown in Fig. 5. As shown in Fig. 5(a)–(c), we found that under 30 
random datasets most of the key features of T2WI, ADC and DWI se
quences had a raincloud plot distributed at a rank of less than 0.30, 
which indicated most of the key features can be selected ignoring the 
change of training data. This stability was more obvious when we 
comprehensively considered each sequence. As shown in Fig. 5(d), the 
key features of the T2WI, ADC, and DWI sequences had an average 
ranking of 6.065%, 7.485%, and 11.506% in the random datasets, 
respectively. That means the key features of all of the sequences of MRI 
ranked on average at the top 12% within other random primary cohorts, 
which demonstrated the satisfactory stability of the key radiomic fea
tures of the prostate gland in spite of the variation of the primary 

cohorts. 

3.5. Tolerance for segmentation deviation 

Four derived ROIs were generated by controlling the distance to the 
original manual segmentation: 1 mm intended ROI, 1 mm expanded 
ROI, 2 mm intended ROI, and 2 mm expanded ROI respectively. 
Accordingly, four derived radiomic models based on these four derived 
ROIs were constructed and validated. As shown in Table 3, the perfor
mance of the 4 derived radiomic models had a decline compared with 
2D-PGRFM based on the original manual segmentation in the validation 
cohort, which was more obvious as the distance increased and more 
evident for the expanded ROI than the contracted ROI. However, it is 
worth noting that the performance decrease was not significant for the 1 
mm intended ROI (GS < 7 vs. GS ⩾ 7: p = 0.732, GS ⩽ 7 vs. GS > 7: p =
0.157), 1 mm expanded ROI (GS < 7 vs. GS ⩾ 7: p = 0.441, GS ⩽ 7 vs. GS 
> 7: p = 0.407), and 2 mm intended ROI (GS < 7 vs. GS ⩾ 7: p = 0.854, 
GS ⩽ 7 vs. GS > 7: p = 0.146) except for the 2 mm expanded ROI in the 
prediction of GS ⩽ 7 vs. GS > 7 (p < 0.05). 

3.6. Influence of unbalanced data distribution 

After ROS, the cases number of GS < 7, GS = 7, and GS > 7 were 
oversampled from 38, 136, and 152 to 152, 152, and 152, respectively. 
For identifying GS < 7, except for a similar ACC (ROSRM: 0.744, 2D- 
PGRFM: 0.742), our 2D radiomic model based on ROS (ROSRM) had 
no improvement in other results in the validation cohort. However, for 
the prediction of GS > 7, ROSRM improved the performance of 2D- 
PGRFM in all of the AUC, SP, SE, and ACC in the validation cohort 
(ROSRM: AUC = 0.835; SP = 0.704, SE = 0.779, ACC = 0.729, 2D- 
PGRFM: AUC = 0.806; SP = 0.662, SE = 0.756, ACC = 0.712), as 

Fig. 4. Calibration curves and decision curves of PGRFM. (a–b) are calibration curves. (c–d) are decision curves. (a) and (c) are for GS < 7 vs. GS ⩾ 7, and (b) and (d) 
are for GS ⩽ 7 vs. GS > 7. 
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shown in Table 2. 

4. Discussion 

PCa tends to be multi-lesioned and has a scattered distribution 
within the prostate gland. The decision-making about PCa depends 
mainly on the Gleason score from needle biopsy, which, however, has 
lesion location limitations and adverse effects. Compared to the local 
lesion, the prostate gland includes multi-lesion information and the 
peritumoral environment that has been reported to be helpful for tumor 
diagnosis or prognostic analysis [48–50]. Besides, VPG has been re
ported to be associated with PCa. Therefore, it is natural to attempt to 
explore further information on the prostate gland and discuss whether it 
is feasible to segment the whole prostate gland as the ROI for identifying 
GS. 

Our study utilized a radiomics analysis on the prostate gland ROI and 
develop a non-invasive method for predicting GS < 7, GS = 7, and GS >
7 among PCa patients. The 3D and 2D-PGRFM models were constructed 
based on the 3D and 2D ROIs, respectively. Compared to clinical model, 
both of them obtained more satisfactory results with a C-index higher 
than 0.700 and an average AUC higher than 0.780, which indicated the 
values of the prostate gland radiomic features in predicting GS. 

Specifically, 2D-PGRFM acquired a higher C-index in predicting GS < 7 
vs. GS = 7 vs. GS > 7 than 3D-PGRFM, and a possible reason for this may 
be due to the noise incurred by resampling the 3D ROIs thickness on the 
z-axis. This result was consistent with a former comparative study be
tween the 2D and 3D CT radiomic features [36]. Within the 2D key 
features, textural features contributed the most, especially when 
computed by GLRLM. This prompted the heterogeneity of PCa, and the 
non-invasive diagnosis preference tended to the roughness of the 
texture. 

Compared with identifying GS < 7, our 2D-PGRFM performed better 
at identifying GS > 7. The reason may be that there were more invaded 
regions in the prostate gland of patients with high-grade PCa. However, 
the specificity of identifying GS > 7 was decreased when 2D-PGRFM was 
combined with the clinical characteristics, probably because the clinical 
predictors were not significant for GS compared to the radiomic 
signatures. 

We investigated the stability of the prostate gland as an ROI in pre
dicting GS. On the one hand, we inspected the stability of the key 
radiomic features in different data cohorts. Our study showed that the 
key features involved in the 2D-PGRFM construction maintained a top 
importance ranking in the other 30 random primary cohorts. This 
indicated the key radiomic features of the prostate gland had good 

Fig. 5. The raincloud plot of the key radiomic features. The ranking of the key features of T2WI (a), ADC (b), and DWI (c), and the average ranking for three 
sequences (d). The vertical axis respectively represents the targeted key features of sequence T2WI, ADC, and DWI, while the horizontal axis shows the corresponding 
feature ranking. 
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stability being free from the influence of the random data cohort when 
predicting GS. On the other hand, we introduced a distance matrix based 
algorithm that could generate derived ROIs with different sizes to 
simulate the manual segmentation error. We found no significant per
formance degradation as the distance to the prostate gland boundary 
increased by 1 mm. However, the results showed that adding more 
external surroundings to the prostate gland, such as the fat or muscle, 
would induce apparent noise to the radiomic model. This indicated that 
the prostate gland segmentation can tolerate an error of up to 2 mm 
while maintaining the stable performance. In addition, our radiomic 
features were less sensitive to the null value, outliers, and MRI resolu
tion, due to the data pre-process and interpolation. 

Certain studies investigated the radiomic method to identify GS. Fehr 
et al. [17] presented multiple machine learning methods for classifying 
GS = 6 vs. GS ⩾ 7, focusing on textural features and two-subgroup 
classification. Wibmer et al. [51] investigated the roles of Haralick 
texture from T2W MRI in differentiating GS = 6 vs. GS = 7, GS = 6 vs. 
GS > 7, and GS ⩽ 7 vs. GS > 7. Chaddad et al. [52] successfully predict 
GS ⩽ 7, GS = 7, and GS ⩾ 7 using mpMRI texture features, respectively. 
However, they did not focus on simultaneously predicting these groups. 
Moreover, previous studies mainly analyzed the information of tumor 
regions, involving sophisticated tumor annotations, and paid little 
attention to VPG. Tanaka et al. [29] found VPG showed a significantly 
more vital predictive ability than serum PSA for identifying PCa. 
Consistently, Peng et al. [28] claimed that the VPG had similar predic
tive performance compared to central-gland volumes from T2WI for the 
diagnosis of PCa. In our study, although the VPG exhibited a strong 
relation to the GS in the primary cohort, it was found to have a weak 
correlation to the GS in the validation cohort. This may be a result of a 
certain difference between the radiomic volume and the actual volume 
and needs to be examined further in a future study involving the accu
rately measured volume. But, our study demonstrated the potential of 
prostate gland radiomic features in achieving three-way identification of 
GS < 7 vs. GS = 7 vs. GS > 7. This is valuable for recommended treat
ment strategies in clinics. Patients with GS < 7 should be monitored 
closely, while those with GS > 7 should undergo more aggressive 
symptomatic treatment. Given that GS = 7 represents a relatively spe
cific group, further examination is recommended in this population. 

The contributing results of prostate-gland-ROI may mainly be due to 
comprehensive information, including the scattered lesion itself and its 
surroundings, reflecting tissue microcirculation and reducing the missed 
diagnosis by capturing occult lesions that are often omitted by naked 
eyes. Also, since the features we used were extracted from the whole 
prostate gland rather than the lesions, we need to worry little about the 
artificial noise to the tumor volume. Meanwhile, the prostate gland 
segmentation was less influenced by the mismatching led by image 
deformation between T2WI and DWI sequences. In addition, compared 
to the refined and complex tumour lesion segmentation, simplified and 
rougher gland segmentation is helpful to achieve auto segmentation in 
the future, which is valuable for the realization and application of the 
fully automated radiomic analysis. Therefore, PGRFM development 
based on prostate gland radiomic features may aid in clinical decision- 
making and promote the automated non-invasive prediction of GS. 

Considering the imbalance of the class occupation could have an 
impact on the performance of the model, we applied ROS and found that 
the performance of 2D-PGRFM was improved, especially the specificity 
in predicting GS > 7, which indicated a space for performance 
improvement of our 2D-PGRFM in a larger dataset. 

The present study possesses some limitations. Firstly, the radiomic 
model constructed based on lesion segmentation was not involved and 
needs to be further compared with our model, which will be investigated 
in future studies. Second, it would be more rigorous to involve multiple 
raters to guarantee the accurate segmentation. Besides, as this was a 
single-center study, further studies involving multiple centers are 
required to determine the generalizability of our model. Lastly, only one 
b-value of 800 s/mm2 was utilized for DWI in our study, and more b- 
value series are supposed to be discussed in further studies. 

5. Conclusion 

This study explored the predictive potential of the prostate gland 
radiomic features in identifying GS, and evaluated the stability of the 
prostate gland as an ROI from the aspects of key feature stability and 
segmentation boundary error tolerance, respectively. Firstly, the satis
factory results of radiomic models, especially the 2D radiomic model, 
indicated the potential of the prostate gland radiomic features in 

Table 3 
Model Performance on the derived ROIs.  

Derived ROI GS < 7 vs. GS = 7 vs. GS > 7 GS < 7 vs. GS ⩾ 7 GS ⩽ 7 vs. GS > 7 

C-index AUC SP SE ACC AUC SP SE ACC 

1 mm          
Indented ROI          
Primary cohort 0.744 0.794 0.868 0.677 0.699 0.803 0.937 0.533 0.749  

(0.785–0.827) (0.725–0.863)    (0.755–0.851)    
Validation cohort 0.690 0.743 0.667 0.723 0.718 0.771 0.883 0.500 0.681  

(0.751–0.812) (0.634–0.851)    (0.698–0.843)    
Expanded ROI          
Primary cohort 0.736 0.793 0.868 0.663 0.687 0.794 0.695 0.790 0.739  

(0.776–0.816) (0.732–0.854)    (0.745–0.842)    
Validation cohort 0.711 0.720 0.733 0.676 0.681 0.799 0.636 0.767 0.706  

(0.767–0.823) (0.625–0.815)    (0.732–0.866)    
2 mm          
Indented ROI          
Primary cohort 0.746 0.767 0.737 0.729 0.730 0.815 0.839 0.665 0.758  

(0.787–0.828) (0.691–0.843)    (0.769–0.860)    
Validation cohort 0.690 0.753 0.667 0.737 0.730 0.769 0.727 0.674 0.699  

(0.751–0.812) (0.649–0.857)    (0.697–0.841)    
Expanded ROI          
Primary cohort 0.725 0.766 0.921 0.545 0.589 0.791 0.707 0.763 0.733  

(0.766–0.807) (0.699–0.833)    (0.769–0.860)    
Validation cohort 0.646 0.705 0.800 0.547 0.571 0.727* 0.584 0.640 0.614  

(0.708–0.769) (0.604–0.805)    (0.650–0.804)    

ROI: region of interest; GS: Gleason score; CI: confidence interval; AUC: area under the receiver operating characteristic (ROC) curve; SP: specificity; SE: sensitivity; *: 
There was a significant difference between the target and 2D-PGRFM. 
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predicting GS. Secondly, our study proved that the prostate gland 
exhibited good stability as an ROI in predicting GS. For one thing, our 
study indicated the key radiomic features of the prostate gland had good 
stability being free from the influence of the random data cohort when 
predicting GS. For another, according to our distance matrix based al
gorithm, the result indicated that the prostate gland segmentation could 
tolerate an error of up to 2 mm maintaining the stable performance. In 
summary, the results of our present study demonstrated that a prostate- 
gland-radiomics-based model incorporating high-dimensional MRI fea
tures has the potential to be used as an assistance for the non-invasive, 
accurate prediction of preoperative GS in PCa patients. 
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