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Background:Weaimed to identify amagnetic resonance imaging (MRI)-basedmodel for assessment of the risk of
individual distant metastasis (DM) before initial treatment of nasopharyngeal carcinoma (NPC).
Methods: This retrospective cohort analysis included 176 patients with NPC. Using the PyRadiomics platform, we
extracted the imaging features of primary tumors in all patients who did not exhibit DM before treatment.
Subsequently, we used minimum redundancy-maximum relevance and least absolute shrinkage and selection
operator algorithms to select the strongest features and build a logistic model for DM prediction. The indepen-
dent statistical significance ofmultiple clinical variableswas tested usingmultivariate logistic regression analysis.
Findings: In total, 2780 radiomic features were extracted. A DM MRI-based model (DMMM) comprising seven
features was constructed for the classification of patients into high- and low-risk groups in a training cohort
and validated in an independent cohort. Overall survival was significantly shorter in the high-risk group than
in the low-risk group (P b 0·001). A radiomics nomogram based on radiomic features and clinical variables
was developed for DM risk assessment in each patient, and it showed a significant predictive ability in the train-
ing [area under the curve (AUC), 0·827; 95% confidence interval (CI), 0.754–0.900] and validation (AUC, 0.792;
95% CI, 0.633–0.952) cohorts.
Interpretation: DMMM can serve as a visual prognostic tool for DM prediction in NPC, and it can improve treat-
ment decisions by aiding in the differentiation of patients with high and low risks of DM.
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1. Introduction

Nasopharyngeal carcinoma (NPC) is an epidemic in South China,
Southeast Asia, and North Africa [1,2]. Notably, it is a highly radiosensi-
tive cancer [3], and with advancements in radiotherapy, control of local
recurrence has substantially improved. Treatment failure primarily oc-
curs in patients with distant metastasis (DM) [4]. Although advances
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Distant metastasis (DM) is currently the main cause of treatment
failure in patients with nasopharyngeal carcinoma (NPC). Most
NPC patients rapidly progress to death due to metastatic progres-
sion; therefore, accurate pretreatment risk assessment for DM is
urgently needed so that aggressive therapeutic strategies can be
used to treat high-risk individuals. Magnetic resonance imaging
(MRI)-based radiomics patterns have been used as prognostic bio-
markers in various types of cancers. Recently, a few radiomics
models were developed for the evaluation of progression-free sur-
vival and progression in patients with advanced NPC; these have
shown significant prognostic capabilities. However, to the best
of our knowledge, a risk assessment model for DM, which is the
primary cause for treatment failure in patients with NPC, has not
been established.

Added value of this study

In this study, we used high-throughput extraction of data-
characterization algorithms to extract specific radiomic features
from patients with NPC and created a DMMRI-based model com-
bining radiomic features and clinical variables. This model allowed
the classification of patients into high-risk and low-risk groups.

Implications of all the available evidence

A nomogram combining radiomic features and clinical variables
serves as a visual tool that aids clinicians in making optimal deci-
sions and identifying patients with a high risk of DM in a timely
and cost-effective manner.
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in chemoradiotherapy have improved DM control, the prognosis re-
mains poor,with a 5-year survival rate of b10% [5].Most patients rapidly
progress to death due to metastatic progression; therefore, accurate
pretreatment risk assessment for DM is urgently required so that
aggressive therapeutic strategies can be used for the treatment of
high-risk individuals.

Currently, clinical treatment decisions for NPC are taken on the basis
of the tumor–nodule–metastasis (TNM) stage [6]. However, in a previ-
ous study, although patients with the same TNM stage received similar
therapies, N20% eventually developed DMand showed poor response to
treatment [7]. Treatment failure was attributed to the use of the TNM
staging system, which simply reflects the anatomy of tumor invasion
and ignores intratumor variations. Previous studies in patients with
NPC have expended substantial efforts for predicting DM by using dif-
ferent clinical variables such as the plasma Epstein–Barr virus DNA
(EBV DNA) status, C-reactive protein (CRP) level, serum lactate dehy-
drogenase (LDH) level, and N-classification [1,8,9]. A previous study
showed that EBV DNA can be a useful independent biomarker of DM
fromNPC [10]. However, most predictive models are based on pretreat-
ment examination of blood metabolism, which provides unstable and
nonspecific results. Several cellular and genetic parameters reflecting
intratumor heterogeneity, such as HOP homeobox (HOPX), microRNA,
and gene expression, have also been used to predict metastasis from
NPC [3,11–14]. However, further tests are needed before these markers
can be used in the clinic, and the high cost of such examinations con-
fines their usage to a small number of patients.

Radiological methods, including conventional radiography, com-
puted tomography (CT), magnetic resonance (MR) imaging (MRI),
and positron emission tomography/CT (PET/CT), are routinely and
widely used in clinical practice because they are noninvasive, repeat-
able, and inexpensive [15,16]. Radiomics, an emerging field of medical
study, involves the transformation of conventional medical images
into analyzable quantitative imaging features extracted by data-
characterization algorithms. It has been applied in various cancers
[head and neck cancer [17], colorectal cancer [18], lung cancer [19,20],
and breast cancer [21] and imaging modalities (MRI, CT, and PET/CT)
[22–24]. Emerging reports have revealed that radiomics can evaluate
the tumor histopathology as well as progression-free survival (PFS), re-
currence, metastasis, and other clinical outcomes [15,25–27]. Recently,
a few radiomics models were developed for the evaluation of PFS and
progression in patients with advanced NPC [28,29]. However, to the
best of our knowledge, a model for assessing the risk of DM, which is
the primary cause for treatment failure in NPC, has not been established.

Therefore, the aim of this studywas to develop and validate anMRI-
basedmodel for the prediction of DMbefore initial treatment in patients
withNPC.We also integrated radiomic featureswith clinical variables to
build a visual nomogram with greater accuracy for the identification of
individuals with a high risk of DM.

2. Materials and methods

The institutional review board of Guangdong General Hospital ap-
proved this retrospective analysis of anonymous data and waived the
requirement for informed consent. In total, 176 consecutive patients
with previously untreated, biopsy-proven NPC were enrolled between
August 2009 and October 2014. The histological tumor subtypes were
categorized according to the World Health Organization (WHO) stan-
dards [30] as follows: type I (differentiated keratinizing carcinoma),
type II (differentiated nonkeratinizing carcinoma), and type III (undif-
ferentiated nonkeratinizing carcinoma). The inclusion and exclusion
criteria are described in Supplementary Methods 1. Eligible patients
were randomly divided into a training cohort (n = 123) and an inde-
pendent validation cohort (n = 53) in a ratio of 7:3. Data concerning
the following 18 conventional clinical variables were obtained from
the medical records: age; sex; T stage; N stage; histological subtype;
pretreatment platelet (PLT), white blood cell (WBC), neutrophil (NE),
and lymphocyte (LY) counts; and pretreatment levels of plasma EBV
DNA, viral capsid antigen immunoglobulin A (VCA-IgA), early antigen
immunoglobulin A (EA-IgA), C-reactive protein (CRP), lactate dehydro-
genase (LDH), alkaline phosphatase (ALP), albumin (ALB), alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), and hemoglobin
(HGB). We also calculated NE/WBC, NE/LY, and ALB/ALP ratios.

All enrolled patients underwent head and neckMRI, chest radiogra-
phy, abdominal ultrasound, PET/CT, and/or skeletal scintigraphy. Pa-
tients were staged on the basis of the 7th American Joint Committee
on Cancer (AJCC) TNM staging manual [31]. If DM was mentioned in
anymedical reports, the potentially involved sites were subjected to ad-
ditional examinations, including CT, MRI, PET/CT, and/or biopsy. If the
presence of DM was immediately confirmed by these additional exam-
inations, the diagnosis was accepted. If additional examinations were
not feasible or yielded negative results, follow-up examinations were
performed every 3months for at least 12months. Patients were consid-
ered to have locoregional disease if the lesion remained unchanged dur-
ing the follow-up period. If lesion enlargement was observed, DM was
considered present.

The primary endpoint of this studywas defined as the time from the
date of the firstMRI study to the date of DMdetection or the date of cen-
soring (date on which the patient was last known to be DM-free. Five-
year survival was analyzed as a secondary endpoint and defined as the
time between the date of the first MRI study and the date of censoring
(date on which the patient was last known to be alive or date of death
from any cause) or the end of 60 months, whichever was earlier. The
minimum follow-up duration for patients without DM was 36 months
after the first MRI study, while the maximum follow-up duration was
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60months. Because N90%metastatic NPCs occur in the first 3 years after
initial treatment, the 5-year outcomes may reflect the long-term effects
of radiation toxicity combined with changes in the tumor biology.

2.1. Treatment

Treatment comprised curative-intent chemoradiotherapy for the
nasopharynx, cervical lymph nodes, and adjacent at-risk tissues.
Patients with stage I tumors were treated with radiotherapy alone,
while those with stage II tumors received concurrent chemoradiother-
apy. Advanced stage tumors (stages III, IVA, and IVB) were treated
with concurrent chemoradiotherapy and adjuvant chemotherapy
[32,33]. The concurrent chemoradiotherapy regimen comprised cis-
platin (40 mg/m2 for 1–5 days per week, 6–7 cycles), beginning on
the first day of radiotherapy. A cumulative radiation dose of ≥66 Gy
was delivered to the primary tumor, while a dose of 60–66 Gy was de-
livered to the involved cervical regions. Adjacent at-risk tissues received
a dose of ≥50 Gy.

2.2. Image acquisition, normalization, and segmentation

In total, 76 patients underwent nasopharyngeal and neck MRI using
a 1ꞏ5-T device (Optima, TwinSpeed, GE Healthcare, Milwaukee, WI,
USA, n = 42; Achieva, Philips Healthcare, The Netherlands, n = 34),
while 100 underwent nasopharyngeal and neck MRI using a 3ꞏ0-T de-
vice (DISCOVERY, TwinSpeed, GE Healthcare, n = 32; Ingenia, Philips
Healthcare, n = 68). The image acquisition parameters are described
in Supplementary Methods 2. We acquired axial T2-weighted (T2-w)
Digital Imaging and Communications in Medicine (DICOM) images
and contrast-enhanced T1-weighted (CET1-w) DICOM images that
had been archived using the Picture Archiving and Communication Sys-
tems (PACS), with normalization. Because different MRI devices with
various protocols were used in this study, the intensity range of the im-
ages was normalized from 0 to 255 using the PyRadiomics platform,
which is an open-source platform implemented in Python 3.6.5
(https://www.python.org/).

Segmentation for regions of interest (ROIs) was performed using
ITK-SNAP software (open source software; https://itk.org/). All images
were manually segmented by a radiologist with 11 years of experience
in head and neck MR image interpretation (O.Y., reader 1), who re-
peated the same procedure after 2 weeks. The interobserver reproduc-
ibility of each segmentation was evaluated by another radiologist with
10 years of clinical experience (B.G., reader 2). ROI for the entire
tumor in each patient was delineated on each slice of both axial T2-w
and CET1-w images.
Fig. 1. Flowdiagram showing the development of a distantmetastasis (DM)magnetic resonance
The steps include (1) MR image acquisition and segmentation, (2) extraction of features using
2.3. Feature extraction and selection and model development

Imaging featureswere extractedusing the PyRadiomicsplatform that
extracts standardized radiomic features from medical image data by
using a large panel of engineered hard-coded feature algorithms
(http://www.radiomics.io/pyradiomics.html) [34]. This platform is
used to standardize feature extraction for the achievement of reproduc-
ibility and comparability among the results. Furthermore, it is used to
explain the meaning and origin of each feature. In the present study,
we extracted three standardized feature classes: first-order statistics,
shape descriptors, and texture features [including gray level
cooccurrence matrix (GLCM), gray level run length matrix (GLRLM),
gray level size zone matrix (GLSZM), gray level dependence matrix
(GLDM), and neighboring gray tone difference matrix (NGTDM)]
[35–37]. In total, we extracted 2803 radiomic features from axial T2-w
and CET1-w images using the PyRadiomics platform.

We used intra- and interclass correlation coefficient (ICC) to assess
the effects of variations in manual segmentation on radiomic feature
values and calculated the intra- and interobserver stabilities for each ex-
tracted feature. ICC was calculated for the 2803 radiomic features, and a
value of N0.75 indicated good agreement.

After ICC calculation, all selected features (ICC N 0.75) were inte-
grated with 22 clinical variables for the construction of a stable and re-
liable primary dataset. The R packagewas used for feature selection.We
performed initial selection from the primary dataset using univariate
analysis with the Mann–Whitney U and χ2 tests. The p-value threshold
for the remaining significant variables was set at 0.05 (P b 0.05). Univar-
iate analysis was used during the initial filtering step to filter out many
unrelated features; this enabled calculation of the optimal feature set
through multivariate analysis. Then, the minimum redundancy-
maximum relevance (mRMR) algorithm was used to rank features,
and the top 10% features were selected [38]. Importantly, themRMR al-
gorithm is an entropy-based feature selection method that initially cal-
culates the mutual information (MI) between a set of features and an
outcomevariable. It ranks input features bymaximizingMIwith respect
to the outcome and subsequentlyminimizes the averageMI for features
with higher rankings. The most marginally significant features with the
highest area under the curve (AUC) were then selected using the least
absolute shrinkage and selection operator (LASSO) algorithm. Use of
the LASSO algorithm could result in overfitting and bias; therefore,
backward elimination was added to reduce the number of remaining
final features. Using the final features, we constructed a classification
model called a distant metastasis MRI-based model (DMMM), with co-
efficients weighted by logistic regression analysis in the training cohort.
An optimal cutoff value for classifying the patients into low- and high-
(MR) imaging (MRI)-basedmodel (DMMM) for patientswith nasopharyngeal carcinoma.
the PyRadiomics platform, and (3) selection of features and development of the model.

https://www.python.org
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Table 1
Characteristics of patients with nasopharyngeal carcinoma (NPC) in the training and validation cohorts. Statistical comparisons between the training and validation cohorts were com-
puted using the Mann–Whitney U test for continuous variables and χ2 test for categorical variables. A P-value of b0.05 indicates a significant difference.

Patients Training cohort
(n = 123)

P value Validation cohort
(n = 53)

P value

DM Non-DM DM non-DM

Age (years) 0.914 0.800
b43 93 26 40 7 20
≥43 83 23 34 5 21

Sex 0.435 0.806
Male 135 40 56 8 31
Female 41 9 18 4 10

T stage 0.306 0.160
T1 14 1 7 1 5
T2 39 14 17 2 6
T3 79 19 31 4 25
T4 44 15 19 5 5

N stage 0.016 0.448
N0 19 2 11 1 5
N1 56 12 30 4 10
N2 78 25 27 4 22
N3 23 10 6 3 4

TNM Stage 0.027 0.005
I 3 0 1 0 2
II 21 3 16 2 0
III 91 25 33 3 30
IVA 38 12 18 3 5
IVB 23 7 8 4 4

Histology 0.525 –
Differentiated keratinising 0 0 0 0 0
Differentiated non-keratinising 4 1 3 0 0
Undifferentiated non-keratinising 172 48 71 12 41

EBV DNA (copies/mL) b0.001 0.446
b3245 88 15 48 4 21
≥3245 88 34 26 8 20

VCA-IgA 0.144 0.583
b1:160 69 26 24 3 16
≥1:160 107 23 40 9 25

EA-IgA 0.268 0.800
b1:20 90 29 35 5 21
≥1:20 86 20 39 7 20

CRP concentration (mg/L) 0.882 0.687
b2.06 87 23 37 5 22
≥2.06 89 26 37 7 19

LDH concentration (U/L) 0.553 0.864
b185 103 27 46 6 24
≥185 73 22 28 6 17

Alkaline phosphatase (U/L) 0.325 0.771
b89 113 28 50 9 26
≥89 63 21 24 3 15

Albumin (g/L) 0.827 0.775
b44 79 21 29 7 22
≥44 97 28 45 5 19

Alanine aminotransferase (U/L) 0.98 0.771
b31 121 33 50 9 29
≥31 55 16 24 3 12

Aspartate aminotransferase (U/L) 0.525 0.930
b25 125 33 55 9 28
≥25 51 16 19 3 13

WBC, ×109/L 0.713 0.941
b7.13 91 24 40 6 21
≥7.13 85 25 34 6 20

Neutrophil, ×109/L 0.906 0.965
b4.73 101 29 43 6 23
≥4.73 75 20 31 6 18

Lymphocytes, ×109/L 0.656 0.639
b1.90 96 28 38 8 22
≥1.90 80 21 36 4 19

Platelet counts, ×109/L 0.185 0.062
b217 88 28 32 3 25
≥217 88 21 42 9 16

Hemoglobin concentration (g/L) 0.966 0.869
b140 74 21 32 5 16
≥140 102 28 42 7 25

Concurrent chemoradiotherapy 0.838 0.375
Yes 153 43 64 9 37
No 23 6 10 3 4
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Fig. 2. Receiver operating characteristic (ROC) curves for a newly developed distant metastasis (DM) magnetic resonance (MR) imaging (MRI)-based model (DMMM) (a, b), radiomic
features (c, d), and clinical variables (e, f) in the training and validation cohorts of patients with nasopharyngeal carcinoma. The ROC curves of DMMM is outperformed than radiomic
features and clinical variables alone in both the training (AUC, 0.827 vs. 0.816 vs. 0.652) and validation (AUC, 0.792 vs. 0.713 vs. 0.660) cohorts.
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risk groups based on the risk of DM was calculated in R with the pROC
package [39]. Feature selection and model development were per-
formed in the training cohort, while the independent validation cohort
was used to evaluate the performance of the model. An overview of the
DMMM development process is presented in Fig. 1.

We drafted a nomogram, which was based on coefficients weighted
by the logistic regression model, in R with the rms package. Calibration
curves were graphically assessed by plotting the observed rates against
the nomogram-predicted probabilities via a bootstrap method with
1000-iteration resampling. We also performed multivariate logistic re-
gression analysis to test the independent significance of distinct clinical
variables.
2.4. Statistical analysis

Kaplan–Meier survival curves and the log-rank test were used to
compare overall survival between the high-risk and low-risk groups.
The clinical characteristics of the training and validation cohorts were
compared using an independent samples t-test, Fisher's exact test, the
χ2 test, or theMann–WhitneyU test, as appropriate. AUCwas calculated
to assess the predictive ability of the model. A two-tailed P-value of
b0.05 was considered statistically significant. All statistical analyses
were performed using R software (version 3.2.1) and Statistical Package
for Social Sciences (SPSS) software (version 23.0). The R software pack-
ages used for our statistical analyses are described in Supplementary
Methods 3. Decision curve analysis (DCA)was used to evaluate the clin-
ical usefulness of DMMM by calculation of the net benefit for a range of
threshold probabilities [40,41] using the following formula:

Net benefit ¼ True positives
n

−
False positives

n
pt

1−pt

� �

where n is the total number of patients in the study and pt is the thresh-
old probability.
Fig. 3. Kaplan–Meier curves for 5-year survival in patients with nasopharyngeal carcinoma.
developed DM magnetic resonance (MR) imaging (MRI)-based model (DMMM). The 5-ye
significant difference between groups (P b 0.001). b. For high-risk and low-risk patients who
rate of high-risk patients who received concurrent chemoradiotherapy is significantly lower t
test was used to calculate P-values.
3. Results

A total of 176 patients with nonmetastatic, pretreatment NPC was
included in our study. The patients' clinical characteristics are summa-
rized in Table 1. The training and validation cohorts were similar in
terms of the baseline clinical characteristics (P N 0.05). Among the en-
rolled patients, 87.5% were treated with chemoradiotherapy and 12.5%
were treated without concurrent chemoradiotherapy.

In total, 2803 radiomic features were extracted from axial T2-w and
CET1-w images. From these features, we selected 1914with high stabil-
ity (ICC N 0.75) and integrated them with 22 clinical variables for anal-
yses using Mann–Whitney U and χ2 tests. A total of 507 features
showed a significant association with DM. After the mRMR algorithm
was applied, 50 features remained and were subjected to further selec-
tion by the LASSO algorithm and backward elimination. The final seven
remaining featureswere used to build DMMM:N stage, “CET1-w_wave-
let.HHL_GLSZM_ Zone-Size Non-uniformity Normalized,” “T2-w_wave-
let.LLH_GLCM_Correlation,” “T2-w_squareroot_GLCM_Idmn,” “CET1-
w_exponential_GLDM_Dependence Variance,” “CET1-w_wavelet.
HLL_GLCM_Correlation,” and “T2-w_squareroot_NGTDM_Strength.”
We included these features in logistic regression analysis, which yielded
DMMM with an AUC of 0.827 [95% confidence interval (CI),
0.754–0.900] in the training cohort and 0.792 (95% CI, 0.633–0.952) in
the validation cohort. The receiver operating characteristic curve
(ROC) is presented in Fig. 2.We calculated the risk score for each patient
using a formula resulting from the seven features weighted by their re-
gression coefficients:

Risk score ¼ 2:18�N stage
þ ð5:5004� CET1−w wavelet:HHL GLSZM Zone−Size Non

−uniformity NormalizedÞ
þ 1:8128� T2−w wavelet:LLH GLCM Correlationð Þ
þ 2:0113� T2−w squareroot GLCM Idmnð Þ
þ 1:5386� CET1−w exponential GLDM Dependence Varianceð Þ
− 3:3369� CET1−w wavelet:HLL GLCM Correlationð Þ
− 3:7724� T2−w squareroot NGTDM Strengthð Þ−5:2924
For patients with high and low risks of distant metastasis (DM), stratified by our newly
ar survival rate is 12% for the high-risk group and 26% for the low-risk group, with a
received concurrent chemoradiotherapy (stratified using DMMM). The 5-year survival
han that of low-risk patients who received the same treatment (P b 0.001). The log-rank
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The optimal cutoff value for dividing the patients into high- and low-
risk groups was 0.37. Accordingly, 62 (35.2%) and 114 (64.8%) patients
were categorized into the high-risk (risk score N 0.37) and low-risk
(risk score b 0.37) groups, respectively. The 5-year survival rate was
12% for the high-risk group and 26% for the low-risk group, with a sig-
nificant difference between groups (P b 0.001; Fig. 3a).

Subgroup analysis for 5-year survival was performed for patients
with early-stage (stages I and II) and advanced-stage (stages III and
IV); there was no significant difference between groups (P = 0.39;
data not shown). The 5-year survival rate of high-risk patients who re-
ceived concurrent chemoradiotherapywas significantly lower than that
of low-risk patients who received the same treatment (P b 0.001;
Fig. 3b).

A nomogram was generated on the basis of the seven radiomic fea-
tures for prediction of the risk of DM in NPC (Fig. 4a). Fig. 4b and c illus-
trate the calibration curves of the nomogram; there was good
calibration in the training and validation cohorts. According to DCA,
when the threshold probability for a patient was within the range of
0% to 100%, the nomogram added more net benefit than the “treat all”
or “treat none” strategies. DCA for the nomogram is presented in Fig. 5.

We additionally built a clinical model based on the clinical variables.
After multivariate analysis, only N stage and the plasma EBV DNA level
remained as independent predictors of DM. The clinical model yielded
an AUC of 0.652 (95% CI, 0.553–0.752) in the training cohort and
Fig. 4. Nomogram for the prediction of distant metastasis (DM) in patients with nasopharyngea
validation (c) cohorts.
0.660 (95% CI, 0.503–0.818) in the validation cohort. We also built a
radiomic signature based on the imaging features alone. After multivar-
iate analysis, five imaging features were selected to build the radiomic
signature, which showed an AUC of 0.816 (95% CI, 0.738–0.895) in the
training cohort and 0.713 (95% CI, 0.554–0.872) in the validation cohort.
Because of an AUC bias of 0.103 between the training and validation co-
horts, we performed cross-validation using out-of-bag bootstrapping
(described in Supplementary Methods 4). The results revealed that
the bias was not an outlier, thus showing the potential overfitting of
the tumor phenotype on the small-scale dataset. The predictive value
of DMMM was increased by incorporating both clinical variables and
imaging features.

4. Discussion

In the present study, we used high-throughput extraction of data-
characterization algorithms to extract specific radiomic features and
construct DMMM with combined radiomic features and clinical vari-
ables for the prediction of DM before initial treatment in patients with
NPC. The patients could be classified into high-risk and low-risk groups
by using our DMMM. Patients in the high-risk group exhibited a signif-
icantly lower 5-year overall survival rate (12%) than did patients in the
low-risk group (26%). We also demonstrated that the radiomic features
constituted independent risk factors for DM.
l carcinoma (NPC) (a) Calibration curves of nomograms developed in the training (b) and
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TheDM-related radiomic featureswith themaximum significance in
the present study were different from those in a previous study [28],
with the exception of the “CET1-w_wavelet.HLL_ GLCM_Correlation”
feature, which is extracted from CET1-w images and considered to re-
flect intratumor heterogeneity from the perspective of grayscale exten-
sion. However, this feature was negatively associated with the risk of
DM in our study. In contrast, the remaining five radiomic features
were specific for predicting the risk of DM. Notably, we found a strong
positive correlation between the “CET1-w_wavelet.HHL_GLSZM_
Zone-Size Non-uniformity Normalized” feature, which is related to var-
iability in gray values in GLSZM, and the risk of DM. Typically, greater
variability in gray values is associated with greater intratumor hetero-
geneity and a higher risk of DM. For instance, Li et al. [26] extracted
quantitative features from breast MR images and showed that radiomic
features included the tumor size and enhancement texture, which indi-
cated tumor heterogeneity. Furthermore, they showed that a smaller
enhancement texturewas associatedwith greater tumor heterogeneity,
which appears to indicate a higher risk of recurrence. Kwan et al. [42]
and Vallieres et al. [43] also suggested that radiomic features could re-
flect the characteristics of intratumor heterogeneity and were associ-
ated with DM. Other DM-related radiomic features reflect intratumor
heterogeneity in terms of local heterogeneity, grayscale extension, var-
iance, and gray value differences in differentmatrices. Thus, we demon-
strated that our DMMM could reflect intratumor heterogeneity, with an
AUC of 0.827 in the training cohort and 0.792 in the validation cohort.

We determined that N stage and the EBV DNA level were outstand-
ing clinical predictors of DM in patients with NPC. Moreover, N stage
was the only clinical feature that could predict DM in combination
with the six identified radiomic features. Although the pretreatment
EBV DNA level is an important risk factor and a predictor of the tumor
response in patients with metastatic NPC [1,5], our results suggested a
much stronger positive correlation between N stage and DM risk in pa-
tients with NPC. We also found that DMMM performed better than the
clinical model in both the training (AUC, 0.827 vs. 0.652) and validation
(AUC, 0.792 vs. 0.660) cohorts. Therefore, DMMM developed in the
Fig. 5. Decision curve analysis for our newly developed distant metastasis (DM) magnetic
resonance (MR) imaging (MRI)-based model (DMMM) for the prediction of DM in
patients with nasopharyngeal carcinoma. The y-axis measures the net benefit. The red
line represents DMMM with integrated radiomic features and clinical variables. The net
benefit is calculated by adding the benefits (true-positive results) and subtracting the
risks (false-positive results), with the latter weighted by a factor related to the harm of
an undetected cancer relative to the harm of unnecessary treatment. Our DMMM shows
the highest net benefit when compared with simple strategies [e.g., follow-up of all pa-
tients (yellow line) or nopatients (horizontal black line)] across the entire range of thresh-
old probabilities at which a patient could choose to undergo follow-up imaging studies.
present study is not only a simple combination of radiomic features
but also a synergy between intratumor heterogeneity and clinical
variables.

Our data showed that patients in the low-risk group could achieve
greater benefit from concurrent chemoradiotherapy than could patients
in the high-risk group. This result is consistent with that of a previous
study where a DM gene signature (DMGN) was built for locoregionally
advanced NPC [3]. The findings of that study suggested that patients
considered to be at low risk as per the DMGN tool experienced benefits
from concurrent chemoradiotherapy,whereas patients considered to be
at high risk did not experience any benefit. Chen et al. [32] demon-
strated that concurrent chemoradiotherapy is not the most effective
choice for patients with high-risk DM; instead, aggressive therapeutic
strategies such as high-dose radiation, adjuvant therapy, andmolecular
target therapy, should be considered for these patients. Accordingly, we
constructed a nomogram based on DMMM for prediction of the meta-
static risk and management of therapeutic strategies for each patient
with NPC. The parameters of the nomogram can be easily acquired.
For instance, N stage is a conventional predictive factor and a compo-
nent of the TNM system in patients with malignancies. Moreover, the
radiomic features could be obtained via common algorithms, which
could transformnasopharyngeal and neckMR imaging features into an-
alytical quantitative features. In summary, our study showed that the
nomogram can serve as either a scoring system or a visualization tool
for DM prediction in patients with NPC, thus aiding physicians in rapid
evaluation of the metastatic risk via a simple calculation method in
the clinic.

This study has several limitations. First, it is known that the AUC
metric is generally used to assess the predictive accuracy of clinical
models, although it does not contain information about follow-up or
clinical consequences. Second, our study included a small number of en-
rolled patients; therefore, despite our efforts to prevent overfitting and
increase the generalizability (univariate analysis, 10-fold cross-
validation in LASSO), the prediction model can be further optimized
with larger datasets. Accordingly, multicenter prospective trials with
larger patient samples are needed in both NPC-endemic and
nonendemic areas in order to improve the clinical efficacy of our
model [41]. Third, various MRI devices were used for the extraction of
radiomic features. We noted that the use of different field strengths
was beneficial in terms of applicability to other sites and centers; how-
ever, many radiomic features may have been filtered out despite supe-
rior performance at a particular field strength.

In conclusion, we developed a novel DMMM combining radiomic
features and clinical variables for the prediction of DM before initial
treatment in patients with NPC and the differentiation of patients with
high and low risks of DM. Our nomogram can serve as a visual prognos-
tic tool that can aid clinicians in identifying patients with a high risk of
DM and accordingly optimizing their therapeutic strategies.
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