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Background: Nuclear grade is of importance for treatment selection and prognosis in patients with clear cell renal cell car-
cinoma (ccRCC).
Purpose: To develop and validate an MRI-based radiomic model for preoperative predicting WHO/ISUP nuclear grade in
ccRCC.
Study Type: Retrospective.
Population: In all, 379 patients with histologically confirmed ccRCC. Training cohort (n = 252) and validation cohort
(n = 127) were randomly assigned.
Field Strength/Sequence: Pretreatment 3.0T renal MRI. Imaging sequences were fat-suppressed T2WI, contrast-enhanced
T1WI, and diffusion weighted imaging.
Assessment: Three prediction models were developed using selected radiomic features, radiomic and clinicoradiologic
characteristics, and a model containing only clinicoradiologic characteristics. Receiver operating characteristic (ROC) curves
and area under the curve (AUC) were used to assess the predictive performance of these models in predicting high-grade
ccRCC.
Statistical Tests: The least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum rele-
vance (mRMR) method were used for the selection of radiomic features and clinicoradiologic characteristics, respectively.
Multivariable logistic regression analysis was used to develop the radiomic signature of radiomic features and
clinicoradiologic model of clinicoradiologic characteristics.
Results: The radiomic signature showed good performance in discriminating high-grade (grades 3 and 4) from low-
grade (grades 1 and 2) ccRCC, with sensitivity, specificity, and AUC of 77.3%, 80.0%, and 0.842, respectively, in the vali-
dation cohort. The radiomic model, combining radiomic signature and clinicoradiologic characteristics, displayed good
predictive ability for high-grade with sensitivity, specificity, and accuracy of 63.6%, 93.3%, and 88.2%, respectively, in
the validation cohort. The radiomic model showed a significantly better performance than the clinicoradiologic
model (P < 0.05).
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Data Conclusion: Multiparametric MRI-based radiomic model can predict WHO/ISUP grade in patients with ccRCC with
satisfying performance, and thus could help the physician to improve treatment decisions.
Level of Evidence: 3
Technical Efficacy Stage: 2

J. MAGN. RESON. IMAGING 2020.

CLEAR CELL RENAL CELL CARCINOMA (ccRCC)
is the most common subtype of renal cell carcinoma and

accounts for ~90% of kidney tumors.1 The major risk factors
of renal cell carcinoma include smoking, obesity, and hyper-
tension.1,2 Tumor nuclear grade is one of the well-known
prognostic factors of ccRCC and considered as an indepen-
dent predictor of cancer-specific survival.1,3 In 2016, the
WHO classification of tumors of the kidney, the WHO/
ISUP system, was recommended for ccRCC grading.4 Radical
operations are acceptable for high-grade ccRCC, while mini-
mally invasive techniques are more feasible management con-
siderations for low-grade ccRCC, such as nephron-sparing
surgery, ablation, and even active surveillance.2 In order to
evaluate the malignant degree of tumor and make an optimal
treatment plan, preoperative pathological stratification is
important. Percutaneous biopsy is of great help in confirming
the grade of ccRCC; however, it is associated with a risk of
procedural complications, potential sampling errors, failure
to perform nuclear grading, and mismatch with pathology
outcome.5

Renal magnetic resonance imaging (MRI), a crucial tool
for preoperative diagnosis in ccRCC, facilitates noninvasive
assessment. Previous studies have found that some MRI fea-
tures contributed to preoperative grading of ccRCC, includ-
ing tumor size, hemorrhage, necrosis, enhancement degree,
and vein thrombosis.6–9

Radiomics is an emerging and promising technique and
has been widely applied in the field of oncology. It converts
medical images into high dimensional and quantitative image
features by means of computer postprocessing technology. By
utilizing model-building algorithms, radiomic features can show
associations with tumor histopathology and heterogeneity.10–14

Several studies have indicated that the increasing heterogeneity
on MRI reflected by radiomics was associated with the histo-
logical grade of cervical cancer and prostate cancer.15,16

The purpose of this study was to develop and validate
an MRI-based radiomic model for preoperative prediction of
ccRCC WHO/ISUP nuclear grade.

Materials and Methods
Patients
Ethical approval was obtained from the Institutional Review Board
of our institute for this retrospective study and the requirement for
informed consent was waived.

Patients with pathologically proven ccRCC from January
2016 to November 2017, with preoperative multiparametric renal

MRI on GE (Milwaukee, WI) 3.0T scanners, were included. The
initial query yielded a target population of 425 patients who were
considered eligible for inclusion in the study. Exclusive criteria
included: 1) patients who received previous treatment or experienced
postoperative recurrence of ccRCC; 2) MRI images with remarkable
artifact (determined by three radiologists: Q.L., X.B., HY.Y.); 3)
WHO/ISUP nuclear grade was not available; 4) the diameter of the
mass in an axial plane less than 1 cm; or 5) the time interval
between MRI examination and following surgical resection was more
than 1 month.

The flowchart of the study population recruitment is shown
in Fig. 1. Finally, our study enrolled 379 patients (age range,
24–87 years old): 88 (23%) female and 291 (77%) male, with a
median age of 54 years. In this study the tumor size ranged from
1.23–14.87 cm. Of all tumors, 206 lesions were less than 4 cm,
119 lesions were between 4 cm and 7 cm, and 54 lesions were more
than 7 cm. The entire dataset was randomly assigned to a training
cohort (n = 252) and a validation cohort (n = 127) at a ratio of 2:1.

MRI Acquisition
MR sequences included axial fat-suppressed T2WI (weighted
images), diffusion-weighted imaging (DWI) (apparent diffusion
coefficient [ADC] calculation thereafter), and dynamic contrast-
enhanced scans. The details of the MRI equipment and MRI scan
protocol are shown in Supplementary A1 and Table S1.

Histopathological Assessment of Nuclear Grade
WHO/ISUP nuclear grade was recorded from pathology reports of
histopathological examination in our institute. The specimens were
from the biopsy of one patient, radical nephrectomy of 127 patients,
and partial nephrectomy of 251 patients. A dedicated genitourinary
pathologist (A.T.G.) rechecked the WHO/ISUP nuclear grade of all
the slides. These tumors were divided into low-grade (grades 1 and
2) and high-grade (grades 3 and 4).

Clinicoradiologic Model Building
The clinicoradiologic characteristics were collected from clinical risk
factors, tumor size, and subjective MRI scores. Clinical risk factors
included gender, age at diagnosis, body mass index (BMI), smoking
(former or current smoker) or not, and hypertension (previous or
current diagnosis of hypertension) or not. The tumor size was the
maximal diameter measured on the axial fat-suppressed T2WI image.
The criteria for the subjective MRI scores is shown in Supplemen-
tary A2 and Table S2.

Univariate analysis was performed to assess the potential asso-
ciation between clinicoradiologic characteristics and nuclear grade.
The normality of all data was analyzed using the Shapiro–Wilk
method. Differences in clinicoradiologic characteristics between low-
and high-grade were assessed using the independent Student’s t-test
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or Mann–Whitney U-test for continuous variables, and Fisher’s
exact test or χ2 test for categorical variables.

The minimum redundancy maximum relevance (mRMR)
method17 was carried out for ranking the clinicoradiologic character-
istics with mutual information. The clinicoradiologic model was
built using multivariable logistic regression on clinical characteristics
in the training cohort.

MRI Radiomic Signature Building

TUMOR SEGMENTATION AND RADIOMIC FEATURE
EXTRACTION. All MR images were exported from the picture
archiving and communication systems (PACS) and then transferred
to an independent workstation for manual segmentation using ITK-
SNAP 3.6 software (www.itk-snap.org). For each tumor, an

FIGURE 1: Flowchart of study population recruitment.

FIGURE 2: Radiomic workflow in this study. (a) Tumor segmentation by radiologists. (b) Feature extraction from tumor region. (c)
Feature selection by ICC and LASSO method and clinicoradiologic characteristics by mRMR. (d) Model construction and validation.
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abdominal radiologist (Q.L., with 10-year experience in abdominal
MRI diagnosis) drew a free-hand 3D region of interest (ROI) on
each slice of the axial fat-suppressed T2WI, ADC map, and cor-
ticomedullary phase of contrast-enhanced T1WI (CE-T1WI). As
shown in Fig. 2, the ROI was drawn along the contour of the lesion,
and the top and bottom layers of the lesion were abandoned to avoid
the partial volume effect.

A total of 4224 radiomic features of the three sequences
(1408 features per sequence) were extracted from the ROIs, included
in four groups: 1) image intensity (first-order features); 2) shape and
size-based features; 3) textural features; and 4) wavelet features.18 All
features extraction methods were implemented using the
Pyradiomics package (https://pyradiomics.readthedocs.io/en/latest/)
based on Python (v. 3.6.5, https://www.python.org/).

INTER- AND INTRAOBSERVER RADIOMIC FEATURE
EXTRACTION REPRODUCIBILITY. Fifty patients were randomly
selected for intraobserver and interobserver reproducibility test. The
radiologist (Q.L.) and another abdominal radiologist (X.B., with
5-year experience in abdominal MRI diagnosis) outlined the ROI
again 30 days after the initial segmentation. The intraclass correla-
tion coefficient (ICC) was used to assess the agreement of extracted
features by intraobserver and interobserver segmentations. An ICC
greater than 0.75 was considered in great agreement and highly
robust.19

RADIOMIC FEATURE SELECTION AND RADIOMIC
SIGNATURE BUILDING. Radiomic signature building was per-
formed in the training cohort. The feature selection and signature
building processes were separately performed on each sequence. The
steps were as follows: first, filtering out the features with ICCs ≤0.75
in the intraobserver or interobserver test; second, refining the most
useful prognostic features using the least absolute shrinkage and
selection operator (LASSO) method; finally, using logistic regression
of the selected features weighted by their coefficients to build a sig-
nature. After those steps, three signatures of three sequences (fat-
suppressed T2WI, CE-T1WI, and ADC) were separately built. Then
a radiomic signature was generated via the linear combination of the
three signatures.

COMBINED MODEL, MODEL VALIDATION, AND
NOMOGRAM CONSTRUCTION. Multivariable logistic regres-
sion analysis was used to develop a combined radiomic model using
radiomic signature and clinicoradiologic characteristics. Model per-
formance was validated in terms of the receiver operating characteris-
tic (ROC) curve and area under the curve (AUC). Sensitivity,
specificity, positive predictive value (PPV), negative predictive value
(NPV), and accuracy were also calculated. The Delong test was used
to explore whether the radiomic model performed better than the
clinicoradiologic model and radiomic signature. Additionally, the
nomogram of the best model was established for visible use. The cali-
bration curves were applied to modify and reduce the bias of the
final model. Also, stratified analysis was applied on a different MR
scanner in the three models to figure out the difference between
scanners in predicting efficiency.
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Statistical Analysis
The statistical analyses were performed with R software (v. 3.5.3; R
Foundation for Statistical Computing, Vienna, Austria) and Python
software (v. 3.6.0). The tests were two-sided and P < 0.05 was con-
sidered statistically significant.

Results
Clinical Characteristics
The clinical characteristics of patients in the training and
validation cohorts are shown in Table 1. The training cohort
included 252 patients (192 male and 60 female; median
age, 54 years; age range, 27–86 years), and 127 patients
were included in the validation cohort (99 male and
28 female; median age, 55 years; age range, 24–87 years).
Except for age (P < 0.05) and tumor size (P < 0.05), there
was no significant difference in gender (P = 0.924), BMI
(P = 0.422), history of smoking (P = 0.218), and hyperten-
sion (P = 0.087) between the two groups in the training
cohort. In the validation cohort, except for tumor size
(P < 0.05), no differences were found between the two
groups in terms of age (P = 0.138), gender (P = 0.631),
BMI (P = 0.251), history of smoking (P = 0.130), and
hypertension (P = 0.759).

Predictive Performance of the Clinicoradiologic
Model
There were significant differences between low-grade and high-
grade ccRCC in the training cohort with age, tumor size, subjec-
tive MRI score of pseudocapsule, shape and margin, hemorrhage,
hypervascularity, intratumoral neovascularity, peritumoral
neovascularity, cystic-solid, vein thrombosis, lymphadenopa-
thy, necrosis, and perinephric invasion (Table S3).

The mRMR selected the top five clinicoradiologic char-
acteristics correlated with nuclear grade, including shape and
margin, vein thrombosis, lymphadenopathy, necrosis, and
perinephric invasion. In multivariable logistic regression anal-
ysis, only shape and margin and necrosis were independent

factors of high-grade ccRCC, and thus they were used to
build the clinicoradiologic model (Table 2).

The clinicoradiologic model showed good performance of
ccRCC grading, which reached an AUC of 0.821 (95% confi-
dence interval [CI], 0.768–0.867) in the training cohort, and
AUC of 0.777 (95% CI, 0.695–0.846) in the validation cohort.

Radiomic Feature Selection and Radiomic Model
Building
According to the standard of the ICC >0.75 in the
intraobserver and interobserver tests, 1368 radiomic features
from T2WI images, 1332 features from CE-T1WI images,
and 1061 features from the ADC map were highly robust
and selected for further analysis (Fig. 3). LASSO and logistic
regression revealed two features from T2WI to construct the
T2WI signature, three key features from CE-T1WI to build
the CE-T1WI signature, and seven features from ADC
images to build the ADC signature. The AUCs of the T2WI,

TABLE 2. Multivariate Logistic Regression Analysis of the Clinicoradiologic Model

β OR 95% CI p

Intercept 4.253

Shape and margin −1.192 0.304 0.145–0.635 <0.05

Vein thrombosis −0.593 0.553 0.196–1.558 0.262

Lymphadenopathy −0.864 0.421 0.137–1.298 0.132

Necrosis −0.755 0.470 0.286–0.772 <0.05

Perinephric invasion −0.402 0.669 0.231–1.936 0.459

CI = confidence interval; OR = odds ratio.

FIGURE 3: Intraclass correlation coefficient (ICC) analysis.
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CE-T1WI, and ADC signatures were 0.794 (95% CI,
0.761–0.926), 0.804 (95% CI, 0.636–0.861), and 0.850
(95% CI, 0.639–0.864), respectively, in the training cohort.
The three signatures were chosen for radiomic signature con-
struction (Table 3).

The AUC of the radiomic signature was 0.860 (95%
CI, 0.811–0.900) in the training cohort and 0.842 (95% CI,
0.767–0.901) in the validation cohort.

Construction of a Combined Radiomic Model and
Nomogram
The combined radiomic model of radiomic signature and
clinicoradiologic characteristics showed a prediction performance

of high-grade ccRCC, which reached an AUC of 0.873 (95%
CI, 0.826–0.912) in the training cohort, and an AUC of 0.845
(95% CI, 0.770–0.903) in the validation cohort. The ROC
curves of the radiomic signature, clinicoradiologic model, and
radiomic model in the training and validation cohorts are shown
in Fig. 4.

The performance of all models in the validation cohort
is shown in Table 4. The AUC of the radiomic model was
significantly better than that of the clinicoradiologic model
(Z = 2.960, P < 0.05). However, there was no significant dif-
ference of AUC between the radiomic model and the radio-
mic signature (Z = 0.184, P = 0.854), or between the
radiomic signature and clinicoradiologic model (Z = 1.740,

TABLE 3. Radiomic Features Selection From the MRI in the Training Cohort

Feature selected Group P-value

T2WI “exponential_gldm_LargeDependenceEmphasis” texture <0.05

“square_glrlm_RunPercentage” texture <0.05

CE-T1WI “original_shape_Sphericity” shape <0.05

“wavelet.HLL_glcm_Imc2” texture <0.05

“lbp.2D_glszm_SizeZoneNonUniformity” texture <0.05

ADC “original_firstorder_Mean” intensity <0.05

“original_firstorder_Median” intensity <0.05

“wavelet.HHL_glszm_LargeAreaLowGrayLevelEmphasis” texture <0.05

“exponential_glcm_Imc2” texture <0.05

“exponential_glrlm_ShortRunLowGrayLevelEmphasis” texture <0.05

“exponential_ngtdm_Busyness” texture <0.05

“square_firstorder_Median” intensity <0.05

ADC = apparent diffusion coefficient; CE-T1WI = contrast-enhanced T1WI; MRI = magnetic resonance imaging.
The description of the radiomic features mentioned above is displayed in the Supplementary A3.

FIGURE 4: Comparison of the AUC of radiomic signature, clinicoradiologic model, and radiomic model in the training and validation
cohorts. (a) ROC curves of three models in training cohort. (b) ROC curves of three models in the validation cohort.
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P = 0.082). Compared with the other two models, the radio-
mic model yielded the highest specificity and accuracy.

The nomogram of radiomic model is illustrated in
Fig. 5a, which could facilitate nuclear grading in clinical prac-
tice (Fig. 6). Figure 5b,c demonstrates the calibration curves
of the radiomic model, which indicated that there was a good
calibration of the prediction result of the radiomic model and
the real result. The stratified analysis demonstrated that there
was no obvious difference in predicting high-grade ccRCC
between the two scanners (Supplementary A4 and Fig. S1).

Discussion
In this retrospective study we developed and validated a mul-
tiparametric MRI-based radiomic model for noninvasively
predicting high-grade ccRCC.

With recent advances in imaging technique and post-
processing analysis, MRI can serve as a diagnostic, therapeu-
tic, and prognostic biomarker for renal cell carcinoma.20

However, the MRI findings of low-grade and high-grade
ccRCC overlap in some cases. Moreover, previous studies are
not completely consistent on which MRI features are valuable

TABLE 4. Predictive Performance of the Three Models for Preoperative ccRCC Grading in the Validation Cohort

Model AUC [95% CI] Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

Clinicoradiologic
model

0.777 [0.695–0.846] 68.2 (15/22) 84.8 (89/105) 48.4 (15/31) 92.7 (89/96) 81.9 (104/127)

Radiomic
signature

0.842 [0.767–0.901] 77.3 (17/22) 80.0 (84/105) 44.7 (17/38) 94.4 (84/89) 79.5 (101/127)

Radiomic model 0.845 [0.770–0.903] 63.6 (14/22) 93.3 (98/105) 66.7 (14/21) 92.5 (98/106) 88.2 (112/127)

AUC = area under the curve; ccRCC = clear cell renal cell carcinoma; CI = confidence interval; NPV = negative predictive value;
PPV = positive predictive value.

FIGURE 5: Radiomic nomogram and its calibration curves. (a) Nomogram of radiomic model for prediction of high-grade in patients
with ccRCC. (b) Calibration curve of the nomogram in the training cohort. (c) Calibration curve of the nomogram in the validation
cohort.
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for nuclear grading.6,8 Therefore, it is challenging to use mor-
phological evaluation of MRI for nuclear grading in ccRCC.
Fortunately, radiomics can reveal the subtle differences of the
intensity distribution in medical images, which cannot be easily
recognized by human eyes, with the pattern of signal distribu-
tion reflecting the heterogeneity of tumors.21 Previous studies
have investigated the potential of computed tomography (CT)-
based radiomic to predict Fuhrman nuclear grade of
ccRCC.22,23 However, there are some limitations to using
CT. First, the Fuhrman grading system has poor interobserver
reproducibility.24 Second, in contrast to CT, MRI provides
multiple forms of soft-tissue contrast, as well as functional
parameters and permits a comprehensive evaluation of
ccRCC.25 Recently, a study using MRI and radiomics to pre-
dict nuclear grade in ccRCC patients demonstrated that the pre-
dictive accuracy of their radiomic signature (74%) was lower
than ours (88.2%).26 We think that the ADC data and wavelet
analysis used in our method improve predictive accuracy.

In this study the clinicoradiologic model performed well
in predicting high-grade ccRCC. In multivariate analysis of
clinical risk factors and subjective MRI scores, only shape and
margin and necrosis were independent predictors of high-
grade ccRCC. The margin of low-grade ccRCC lesions was

regular, and a round shape was often observed. The high-
grade ccRCC lesions tend to be aggressive, with an irregular
shape and ill-defined margin, with the presence of necrosis
and perinephric fat invasion or distant metastasis. Necrosis
has been demonstrated to be an independent predictor of
high-grade ccRCC in previous studies.6,8 Coy et al reported
that high-grade ccRCC lesions showed ill-defined tumor mar-
gins.27 Wei et al showed that the tumor shape differed signifi-
cantly between low-grade and high-grade ccRCC.28 Two
MRI characteristics (shape and margin, necrosis) extracted in
this study were consistent with previous studies,8,27,28

reflecting the features of invasive growth and uneven distribu-
tion of blood supply in high-grade ccRCC.

By revealing the heterogeneity of tumors, the radiomic
signature has been more and more used to predict the degree
of malignancy. In our study, the radiomic signature from MRI
showed excellent performance in predicting high-grade ccRCC.
The 12 radiomic features in the final radiomic signature
included two features from T2WI, three features from CE-
T1WI, and seven features from the ADC map. Most of these
radiomic features were obtained from exponential or wavelet fil-
tered images, which were high-dimensional features and could
not be easily deciphered by humans. The results suggest that

FIGURE 6: Two cases with ccRCC. a–d: Preoperative MRI in a 73-year-old man with ccRCC of WHO/ISUP grade 2 in the right kidney.
Considering the radiomic signature of 0.049, shape and margin of 1, and necrosis of 0, the risk of high-grade ccRCC was smaller
than 0.1 according to the nomogram. (a) Axial fat-suppressed T2WI showed a round-shaped, well-defined, solid mass. (b) The lesion
showed similar signal compared with renal parenchyma on the ADC map. (c) On corticomedullary phase of contrast-enhanced T1WI,
the lesion showed significant enhancement. (d) The tumor cells were relatively small, with clear cytoplasm, small to moderate
nucleus with round shape, small nucleolus (hematoxylin–eosin staining, 40× magnification). e–h: Preoperative MRI in a 52-year-old
man with ccRCC of WHO/ISUP grade 3 in the left kidney. Considering the radiomic signature of 0.586, shape and margin of 1, and
necrosis of 2, the risk of high-grade ccRCC was 0.6 according to the nomogram. (e) Axial fat-suppressed T2WI showed a round-
shaped, well-defined, solid mass with central necrosis. (f) The lesion showed lower signal than renal parenchyma on the ADC map.
(g) Compared with the renal cortex, the lesion showed slight enhancement with intratumoral vessel on corticomedullary phase of
contrast-enhanced T1WI. (h) The tumor cells were large, with clear or eosinophilic cytoplasm and obvious nucleolus (hematoxylin–
eosin staining, 10× magnification).
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combining multiple MRI sequences allowed the collection of
more valuable information of the tumor than a single sequence.
T2WI could provide morphological features of ccRCC, includ-
ing pseudocapsule, cystic components, and necrosis, which are
often seen in high-grade ccRCC.6 ccRCC commonly exhibits
hypervascularity, and CE-T1WI can show the enhancement
degree and neovascularization within the tumor.29 DWI could
provide excellent tissue contrast based on the molecular diffu-
sion of water within tumors, and the reported ADC has been
associated with the degree of malignancy in tumors.8

The radiomic model combined with radiomic signature
and clinicoradiologic characteristics significantly improved the
predictive performance in contrast to the clinicoradiologic
model. A meta-analysis of the percutaneous biopsy revealed
that the median concordance rate between grading on biopsy
and the surgical specimen was 87% using the two-tier (high
vs. low) grading system,30 while our radiomic model achieved
a similar diagnostic accuracy of 88.2% with noninvasive pre-
operative MRI. Therefore, the radiomic model may eventu-
ally be a supplement to percutaneous biopsy.

Limitations
The present study had several limitations. First, our model
was trained and validated using retrospective data obtained
from a single institution, which could yield an unintentional
selection bias. A large-scale prospective and multicenter study
is needed to validate our results. Second, in this study the
diameter of lesions in many cases was more than 4 cm.
Future studies are needed to further verify the value of the
radiomic model for small ccRCC, which is of great impor-
tance to urologists. For a radiomics study, our numbers were
on the small side.

Conclusion
The radiomic signature from multiparameter MRI can distin-
guish high-grade ccRCC from low-grade ccRCC with good
performance. The radiomic model combining a radiomic sig-
nature and clinicoradiologic characteristics could improve the
predictive performance of high-grade ccRCC, and thus can
provide physicians noninvasively preoperative characterization
of ccRCC.
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