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Abstract 

Rationale and Objectives 

To build and validate a computed tomography (CT) radiomic model for preoperatively 

predicting lymph node metastasis in early cervical carcinoma. 

Materials and Methods 

A dataset of 150 patients with stage IB1 to IIA2 cervical carcinoma was retrospectively 

collected from the xx and separated into a training cohort (n = 104) and test cohort (n 

= 46). A total of 348 radiomic features were extracted from the delay phase of CT 

images. Mann-Whitney U test, recursive feature elimination, and backward elimination 

were used to select key radiomic features. Ridge logistics regression was used to build 

a radiomic model for prediction of lymph node metastasis (LNM) status by combining 

radiomic and clinical features. The area under the receiver operating characteristic 

curve (AUC) and kappa test were applied to verify the model. 

Results 

Two radiomic features from delay phase CT images and one clinical feature were 
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associated with LNM status: log-sigma-2-0-mm-3D_glcm_Idn (P = 0.01937), wavelet-

HL_firstorder_Median (P = 0.03592), and stage IB (P = 0.03608). Radiomic model was 

built consisting of the three features, and the AUCs were 0.80 (95% confidence interval 

(CI): 0.70~0.90) and 0.75 (95%CI: 0.53~0.93) in training and test cohorts, respectively. 

The kappa coefficient was 0.84, showing excellent consistency. 

Conclusions 

A noninvasive radiomic model, combining two radiomic features and a FIGO stage, 

was built for prediction of LNM status in early cervical carcinoma. This model could 

serve as a preoperative tool. 

Advances in knowledge 

A noninvasive CT radiomic model, combining two radiomic features and the FIGO 

stage, was built for prediction of LNM status in early cervical carcinoma.  
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built consisting of the three features, and the AUCs were 0.80 (95% confidence interval 

(CI): 0.70~0.90) and 0.75 (95%CI: 0.53~0.93) in training and test cohorts, respectively. 

The kappa coefficient was 0.84, showing excellent consistency. 

Conclusions 

A noninvasive radiomic model, combining two radiomic features and a FIGO stage, 

was built for prediction of LNM status in early cervical carcinoma. This model could 

serve as a preoperative tool. 

Advances in knowledge 

A noninvasive CT radiomic model, combining two radiomic features and the FIGO 

stage, was built for prediction of LNM status in early cervical carcinoma.  
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Introduction 

Cervical carcinoma is a common malignant tumor, with an annual worldwide incidence 

of 500,000, more than 80% of which are in developing countries (1). In China, the 

incidence and mortality of cervical carcinoma are 98,900 and 30,500 in 2015, 

respectively (2).  

Surgery and adjuvant therapy are the main therapy options for cervical carcinoma. 

Lymph node metastasis (LNM) is an independent risk factor for the outcome of cervical 

carcinoma, and pelvic lymphadenectomy (PLD) is routinely recommended during 

surgery, which is required for cervical carcinoma with International Federation of 

Gynecology and Obstetrics (FIGO) stage IA1 with LVSI and stage IA2 to IIA2 (3).  

Previous studies reported that no more than 30% of early cervical carcinoma patients 

had LNM (4–7), which suggests that 70% of patients underwent unnecessary PLD, and 

some even underwent unnecessary lymph node (LN) radiotherapy. Such overtreatment 

is caused by inaccurate LNM staging before surgery. The gold standard for LNM 

staging is postoperative histology. However, a surgeon needs to dissect important 

vessels, which is associated with high difficulty, high risk, and a series of intraoperative 

and postoperative complications (8–11). Preoperative diagnosis of LNM is mainly 

dependent on computed tomography (CT) and magnetic resonance imaging (MRI) 

based on the morphology of LN, which suffers from great subjectivity (12–14). 

Therefore, new methods for accurate diagnosis of LNM before surgery are needed to 

help doctors establish personalized PLD schedules. 

Recently, radiomics has been proposed to extract rich information by quantitative and 
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high throughput analysis of conventional medical images (15,16). It has been used to 

estimate LNM status by extracting quantitative characteristics from CT images related 

to bladder, colorectal, breast, thyroid, esophageal, and lung adenocarcinoma, and the 

radiomics nomogram showed good predictive performance (17–23). Therefore, the 

intention of this study was to assess the LNM status in individuals affected by cervical 

carcinoma by using a CT radiomics method. To accomplish this, we developed a 

radiomic model to obtain predictions of the LNM status preoperatively. 

 

Materials and Methods 

Patients 

This was a retrospective study, and requirement for patients’ informed consent was 

waived by the institutional review board of our hospital. We reviewed records from 

between 2008 and 2018. Considering the longest time required for the effects of the 

drugs to be apparent in CT images, the experiments were performed first on patients 

with a delay phase. A total of 172 cervical carcinoma cases with a FIGO stage from IB1 

to IIA2 were included in accordance with the following criteria: 1. postoperative 

histology confirmed cervical carcinoma and LN status; 2. no preoperative adjuvant 

therapy; 3. preoperative CT images (thickness of 1.0 mm or 1.5 mm) and available 

clinical data; 4. no other malignant tumors; 5. patients with complete delay phase CT 

images. Twenty-two patients were excluded for the following criteria: 1. maximum 

diameter of the tumor was less than 20 pixels; 2. metal artifacts exist in images. Finally, 

150 patients with delay phase CT scans were enrolled and sorted by CT acquired time; 
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the first 70% of the patients were used as the training cohort (n=104, containing 21 

LNM patients and 83 non-LNM patients), the remainder as the test cohort (n=46, 

containing 10 LNM patients and 36 non-LNM patients). 

 

Clinical and Pathologic Features 

Clinical, imaging, and pathological information were collected from the hospital system 

(DHC-EMR; Table 1). Clinical features included age, menarche time, pregnancy and 

parturition numbers, FIGO stage, and histological type of tumor. Imaging features 

included the status of corpus uteri, vagina, and LN on CT reports. Pathological 

information included the status of LNM after surgery. 

 

CT Image Acquisition 

All patients were scanned by the SIEMENS Definition Double Source CT (SOMA-

TOM Definition, Siemens Ltd, Germany). Scanning range was from the upper margin 

of the kidney to 2 cm off the lower edge of the pubic symphysis. We used a double tube 

high pressure syringe at a speed of 3.5 ml/s to engage patients with a right cubital vein 

injection of 75 ml non-ionic iodine contrast agent Ultravist (370mgL/mL, Schering 

Pharmaceutical Co. Ltd. Guangzhou Germany), followed with 30 ml normal saline. At 

the same time, aortic bifurcation 2.0 cm above the region of interest (ROI) was 

performed using contrast tracer method (BOLUS TRACKING) dynamic monitoring of 

CT; an automatic trigger scan ROI was setup when the CT value reached 120 Hu. After 

35 s priming delayed venous phase scanning and 120 s trigger delayed phase scanning, 
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venous phase and delayed phase image capture were performed, respectively. All 

images were derived in the DICOM3.0 format. 

 

Tumor Segmentation 

ROI segmentation was indispensable for feature extraction. One gynecologist with 5 

years of experience (observer 1) manually delineated two-dimensional ROI (the largest 

area of the primary tumor) on all original images of plain scan, arterial phase, venous 

phase, and delayed phase, using the ITK-SNAP open-source software (www.itk-

snap.org). Another gynecologist with 10 years of experience (observer 2) examined all 

the segmentations. Observer 2 selected 30 cases randomly and re-delineated the ROIs 

to test the inter-observer error. 

 

Radiomic Feature Extraction 

We obtained a series of CT scans with mean values of 0 and variance of 1 by using z-

score method in the training cohort, and then resampled these CT scans to ensure that 

each scan had the same layer to layer and voxel to voxel spacing.  

Then, two-dimensional radiomic features were extracted from the ROIs. Image 

transformation used two types of filters (Fig. 1): (I) Wavelet filter, and (II) Laplacian of 

Gaussian (LOG) filter. The radiomic features were divided into three groups: (I) first-

order statistical features, (II) morphological features, and (III) texture features. The 

explanations of radiomics features and image filters are detailed in Supplement 1. 
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Statistical Analysis 

For the LNM class, we used label encoding to represent discrete properties in terms of 

numbers, and binarized these numbers by one-hot encoding. Apart from making 

features sparse, one-hot encoding can also add the number of features. The output of 

the model is the probability of LNM. 

The Mann-Whitney U test was used to examine the significance of radiomic features 

(P value < 0.05 was considered significant). To eliminate redundant features with 

collinearity, we carried out recursive feature elimination (RFE) with cross-validation. 

RFE is a greedy algorithm for finding a preferable feature subset; the underlying RFE 

model used here was ridge logistic regression. We choose backward elimination to 

identify optimum feature combination by adding all variables to the regression equation 

at one time and then sequentially removing single variable that did not significantly 

affect the regression equation until all variables were significant. What needs to be 

added is that the multivariate P value < 0.05 indicates that the effect on the regression 

equation is significant. 

Logistic regression with L2-norm was used to construct the radiomic model. Owing to 

the unbalanced samples, class weights were adjusted. Model performance was assessed 

by the receiver operating characteristic (ROC) curve and the area under the curve 

(AUC). At the same time, we also used a calibration curve to evaluate the model. 

Decision curve analysis helps choose the model that predicts the greatest net benefit. 

The abscissa indicates the threshold probability and the ordinate indicates the net 

benefit. The higher the decision curve, the better the model's net income. Furthermore, 
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we performed an inter-observer error test on segmentation results from the 30 selected 

patients and calculated the kappa coefficient between the two results (kappa coefficient > 

0.6 indicates a feature with high consistency). 

We used Python (URL: https://www.python.org/, version 3.6.5) to extract features and 

perform statistical analysis (Fig. 2). The ‘pyradiomics’ package was used to extract 

radiomics features. The ‘scikit-learn’ package was applied for RFE, cross-validation, 

ridge logistic regression, and model evaluation. 

 

Results 

Clinical Features and Radiomic Features 

This study contained 150 patients (104 in the training cohort and 46 in the test cohort). 

The mean age were 47.87±10.61 and 45.80±13.72 in the training cohort and test 

cohort, respectively. Seventy-seven patients of IB stage and 27 patients of IIA stage 

were in the training cohort, and 38 patients of IB stage and 8 patients of IIA stage were 

in the test cohort. Squamous carcinoma and non-squamous carcinoma in the training 

and test cohort were 82 and 21, and 38 and 6, respectively. Fifteen and 5 patients were 

reported LNM by CT in the training and test cohort. We extracted 348 radiomic features 

from the tumor ROI, including 108 first-order statistical features, 12 morphological 

features, and 232 texture features.  

As shown in Fig. 3, the performance (accuracy) of the model was best when the number 

of features was 10. In light of the backward elimination results, three features were 

selected for modeling: (1) log-sigma-2-0-mm-3D_glcm_Idn (Inverse Difference 
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Normalized), representing the local homogeneity of the CT after using the LOG filter; 

(2) wavelet-hl_firstorder_median, representing the median gray level intensity in the 

ROI after using the wavelet filter (HL); (3) stage IB, representing that the patient's 

FIGO stage was IB. The P values in multivariate analysis were less than 0.0001. The 

distribution of these features is shown in Fig. 3. 

 

Apparent Performance of the Radiomics Model 

We used the three selected features to build a radiomics model, which was then applied 

in the test cohort for testing. The ROC curves of the radiomic model in the training and 

test cohorts are shown in Fig. 4. The AUCs of the radiomic model in the training and 

test cohorts were 0.80 (95%CI: 0.70–0.90) and 0.75 (95%CI: 0.53–0.93), respectively, 

indicating that the model was a good predictor of LNM. In addition, we removed 

clinical features and only used radiomic features to build a model (AUC: 0.73 [95%CI: 

0.60–0.85]; Fig. 4), and found that the addition of clinical features could significantly 

improve the performance of the model. The decision curve of the radiomic model is 

shown in Fig. 4. We found that when the threshold probability was larger than 5%, the 

radiomic model was more effective than treat-all and treat-none schemes. 

 

Validation of the Radiomics Model 

The result of the kappa test between the two segmentations (i.e., those performed by 

the two observers) was 0.84, indicating excellent consistency of the features. 

We further investigated the phases by supplementing 149 patients with arterial phase 
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and 146 patients with venous phase to implement the prediction of LNM. We found that 

there were no significant radiomics features for arterial phase patients and a non-

significant prediction result for venous phase patients.  

 

Discussion and Conclusion 

We developed and validated a CT radiomic model for preoperative prediction of LNM 

in early cervical carcinoma. By the validation in the test set, we found that the radiomic 

model had good predictive capacity. This study tested radiomic and clinical features to 

establish the model, and three features were singled out: (1) log-sigma-2-0-mm-

3D_glcm_Idn (Inverse Difference Normalized); (2) wavelet-hl_firstorder_median; (3) 

stage IB. 

The main preoperative techniques for predicting LNM are LN ultrasonography, CT, 

MRI, PET-CT, and needle aspiration biopsy of LN. Ultrasonography is only suitable 

for superficial LN, but is unsatisfactory for deep LN such as pelvic lymph nodes. CT 

and MRI are the most widely used imaging examinations for LN diagnosis. Criteria for 

determining LNM are based on morphology (e.g., shortest diameter more than 1 cm, 

uneven density of LN, central necrosis, coarse envelope, or shape of the circle from an 

ellipse). The sensitivity and specificity of CT and MRI in the diagnosis of LN are 64% 

& 72%, and 93% & 93%, respectively (12). These two methods have certain 

subjectivities, making it difficult to distinguish metastatic LN and inflammatory LN 

(12–14). Consequently, the evaluating performance is poor, and the diameters of 

metastatic LN with more than 40% are less than 1 cm (24,25).  
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Many hospitals lack PET-CT equipment, and the cost of inspection is very high; 

therefore, this approach is not widely used at present. Some researchers have suggested 

that the value of FDG-PET for LNM diagnosis is not as good as that using MRI, where 

sensitivity and specificity in detecting pelvic LN were 67% and 84% with MRI, and 

33% and 92% with FDG-PET in their study (14,26).  

The 2018 National Comprehensive Cancer Network clinical practice guidelines no 

longer recommend LN needle aspiration biopsy (3). Errors in preoperative molecular 

detection of solid tumors are spatially and temporally heterogeneous, but relatively 

noninvasive medical imaging examination could provide more comprehensive 

information (27). 

The limitations of our study were as follows. First, all data were from a single center. 

Multi-center external validation with a larger simple size is needed to improve the 

predictive capacity of the model for clinical application. Second, we only identified  

the largest area of the primary tumor. Therefore, this study lacked three-dimensional 

radiomics analysis. Third, only CT data were used for radiomics analysis; it may be 

better to combine preoperative biopsy pathological images or MRI data to construct the 

model and that will be our future direction of work. 

In conclusion, this radiomic model, which combined two radiomic features and FIGO 

stage, is a noninvasive tool that shows good performance. It could be potentially and 

conveniently used for assessing LNM status individually before surgery in early 

cervical carcinoma patients. Furthermore, the use of this model could avoid 

unnecessary PLD, which would reduce treatment risks and the financial burden of these 
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patients.   1 
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Figure Legend 

Fig. 1. Inclusion and exclusion criteria. 

Fig. 2 Flow chart of statistical analysis. 

Fig. 3 (a) showed the model performance evaluated through the numbers of features as 

a function of the cross-validation feature recursive elimination algorithm. (b), (c), (d) 

and (e) were statistical charts for the optimal subset of features. (b) and (c) were violin-

plots of radiomic features in the training cohort and test cohort, respectively. (d) and (e) 

showed count-plots of clinical features in the training cohort and test cohort, 

respectively. 

Fig. 4 (a) was the receiver operating characteristic (ROC) curve of radiomic models for 

the training cohort (red, green, and yellow lines) and test cohort (blue line). (b) was the 

decision curve for the radiomics model (red line), clinical model (green line), radiomics 

model only using radiomics features (yellow line), treat-all (thin black line), and treat-

none (thick black line) schemes. The thin black line represented the assumption that all 

patients have lymph node metastasis (LNM); the thick black thick represented the 

assumption that none of the patients have LNM. 
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Table 1. Clinical features of patients 

 

Training cohort Test cohort 

 Feature No. Mean±SD No. Mean±SD P 

Age 

 

47.87±10.61 

 

 45.80±13.72 0.499 

FIGO stage  

    

< 0.001* 

IB 77 

 

38 

  IIA 27 

 

8 

  Pregnancy 

 

3.77±2.00 

 

3.76±1.92 0.1155 

Histologic type 

    

0.3996 

Squamous carcinoma 82 

 

38 

  Non-squamous 

carcinoma 21 

 

6 

  Parturition 

 

2.77±1.47 

 

2.43±1.47 0.1319 

Menarche time 

 

14.26±2.76 

 

13.70±3.78 0.0537 

CT-reported LN 

status 

    

0.1445 

Negative 84 

 

39 

  Positive 15 

 

5 

  CT-reported vagina 

status 

    

0.1464 

Negative 96 

 

42 

  Positive 3 

 

2 

  CT-reported uterus 

status 

    

0.4678 

Negative 97 

 

37 

  Positive 2 

 

7 

  NOTE: P value was calculated from univariable analysis between each of the clinical 

features and LN status. *P value < 0.05 
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