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Abstract
Purpose: Borrmann classification in advanced gastric cancer (AGC) is neces-
sarily associated with personalized surgical strategy and prognosis. But few ra-
diomics research studies have focused on specific Borrmann classification, and 
there is yet no consensus regarding what machine learning methods should be 
the most effective.
Methods: A combined size of 889 AGC patients was retrospectively enrolled 
from two centers. Radiomic features were extracted from tumors manually delin-
eated on preoperative computed tomography images. Two classification experi-
ments (Borrmann I/II/III vs. IV and Borrmann II vs. III) were conducted. In each 
task, we combined three common feature selection methods and five typical 
machine learning classifiers to construct 15 basic classification models, and then 
fed the 15 predictions to a designed multilayer perceptron (MLP) network.
Results: In internal and external validation cohorts, the proposed ensemble 
MLP yielded good performance with area under curves of 0.767 and 0.702 
for Borrmann I/II/III vs. IV, as well as 0.768 and 0.731 for Borrmann II vs. III. 
Considering the imbalanced distribution of four Borrmann types (I, 2.9%; II, 
12.8%; III, 69.5%; IV, 14.7%), the ensemble MLP surpassed the overfitting bar-
rier and attained fine specificity (0.667 and 0.750 for Borrmann I/II/III vs. IV; 0.714 
and 0.620 for Borrmann II vs. III) and sensitivity (0.795 and 0.610 for Borrmann I/
II/III vs. IV; 0.652 and 0.703 for Borrmann II vs. III). Also, survival analysis showed 
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1  |   INTRODUCTION

Gastric cancer (GC) remains common around the world 
and takes the third leading role in causes of cancer mor-
tality as estimated in 2018.1,2 Accurate classification of 
advanced gastric cancer (AGC) is one of key factors of 
personalized treatment strategies. The Borrmann clas-
sification system, developed in 1926 according to the 
gross appearance, is still widely used by surgeons, pa-
thologists, endoscopists, and radiologists worldwide.3

Research has revealed that Borrmann type IV is re-
garded as an independent prognostic factor for AGC and 
it usually has a worse prognosis than other Borrmann 
types.4 Thus, it naturally makes sense to distinguish 
Borrmann type IV from the other types. Borrmann type 
I tumors have special morphological characteristics as 
nodular polypoid and the lesions generally invade the 
mucosa, submucosa, and muscularis, but rarely invade 
the serosa.5 However, Borrmann type II and III tumors 
are both ulcerative, and it may be difficult to distinguish 
the tumor invasion in surrounding tissues from inflam-
matory edema or adipose deposition of surrounding tis-
sues, as the spread of tumor microvascular vessels is 
larger than the actual invasion of tumors. But Borrmann 
type III AGC is recommended a larger surgical resec-
tion margin (at least 5  cm) than Borrmann type II (at 
least 3 cm)6 and usually displays worse prognosis than 
the latter.7 And the accuracies for assessing Borrmann 
type II and III through computed tomography (CT) are 
relatively low (79.7% and 80.0%),5 wherein assess-
ments by junior radiologists even fall behind senior ra-
diologists. Thus, further differentiating Borrmann type 
II from III accurately is necessary for developing a rea-
sonable surgical plan and evaluating the prognosis.

Many modalities including double contrast barium 
meal, endoscopy, endoscopic ultrasonography (EUS), 
double contrast-enhanced ultrasonography (DCEUS), 
and CT have been applied for evaluating Borrmann 
classification preoperatively.5 Among these modalities, 
the accuracy of double contrast barium meal technique 
is low. Endoscopy and EUS are invasive to some ex-
tent, and patients with upper gastrointestinal stenosis 

or obstruction are not suitable for such examinations. 
According to a previous research that compared the 
accuracy of multidetector CT (MDCT) with DCEUS in 
Borrmann classification determination,5 DCEUS may 
act as a complementary tool in preoperatively assess-
ing the gross appearance of GC; however, it more de-
pends on the operator's experience. Thereupon, CT 
with high resolution and multiplanar reformatted views 
is now the most commonly used imaging method in 
preoperative examination of GC, which plays a very 
important part in determining the location, size, and in-
filtration depth of tumors.

These years, the advent of radiomics has improved 
the understanding of medical images. The primary 
concept of radiomics lies in mining high-throughput 
image features quantitatively and making connections 
between these features with tumor heterogeneity re-
lated to clinical issues.8–11 Machine learning models, 
the core of radiomics, show great potential in cancer 
diagnosis wherein various feature selection and clas-
sification methods have been explored. Parmar et al.12 
explored 14 feature selection methods and 12  clas-
sification methods, and found random forest (RF) 
surpassed all the others. Wu et al.13 conducted a com-
parative study on 24 feature selection methods and 
3 classification methods, and the results showed that 
naïve Bayes (NB) yielded highest classification perfor-
mance. Similar comparative study design was also de-
rived in several research studies.14–16 However, a new 
problem emerges: which feature selection method and 
which classifier on earth are most suitable for certain 
classification tasks? Among most radiomics research 
studies applied so far, there is no received coherent 
conclusion.

To this end, it is natural to expect ensemble learn-
ing that takes full advantage of multiple classification 
models. Boosting algorithm,17 is a popular ensemble 
strategy that discovers and utilizes complex informa-
tion from different models. On the other hand, multi-
layer perceptron (MLP) networks have shown excellent 
ability in coping with highly variable predictions by fully 
connecting compositional layers of neurons.18,19 These 
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that patients could be significantly risk stratified by MLP predicted types in both 
experiments (p < 0.0001, log-rank test).
Conclusions: This study proposed an MLP-based ensemble learning architec-
ture, which could identify Borrmann type IV automatically and improve the differ-
entiation of Borrmann type II from III. The study provided a new view for specific 
Borrmann classification in clinical practice.
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may inspire a new train of thought to adopt the MLP ar-
chitecture in boosting-based ensemble learning in this 
study.

As far as we know, only one CT-based radiomics 
study was conducted to differentiate Borrmann type 
IV GC from primary gastric lymphoma.20 However, this 
study may not provide a comprehensive view of specific 
Borrmann classification in AGC. In the current study, 
we thus advocated an MLP-based ensemble learning 
architecture to identify Borrmann type IV automatically 
and improve the differentiation of Borrmann type II from 
III.

2  |   MATERIALS AND METHODS

2.1  |  Research dataset

The Ethical Committees of Affiliated Renmin Hospital 
of Jiangsu University (center 1) and Lanzhou University 
Second Hospital (center 2) both granted this retro-
spective research and informed consent was waived. 
Patient recruitment criteria are given in Text S1 (see 
Supplementary Materials). Borrmann types are defined 
by Borrmann system and CT image interpretation (Text 
S2).21,22 Totally, a combined size of 889 AGC patients 
was enrolled from the two centers. A summary of 597 
consecutive AGC patients in center 1 (December 2011 
to December 2016) fulfilled the recruitment criteria. The 
four Borrmann types accounted for 2.7%, 7.2%, 74.2%, 
and 15.9%, respectively. A total of 292 AGC patients 
treated at center 2 (January 2013 to December 2015) 
were analyzed as an independent external cohort. The 
four Borrmann types occupied 3.4%, 24.3%, 59.9%, 
and 12.3%, respectively.

The contrast-enhanced portal venous phase CT im-
ages were all available. Image acquisition procedure is 
described in Text S3. Detailed CT protocols are given 
in Table S1. By contouring along the margin of tumor 
on the slice with largest tumor area, all the tumor re-
gions of interest (ROIs) were manually delineated using 
ITK-SNAP (version 3.6, http://www.itksn​ap.org) and 
thereafter validated by senior radiologists blind to other 
information of corresponding patients. Baseline clinical 
factors included age, sex, clinical T stage, and clinical 
N stage.

2.2  |  Overall experimental design

Two binary classification experiments were conducted. 
For experiment A, we investigated if the proposed 
method could distinguish Borrmann type IV (denoted 
as ‘0’) from the other three types (denoted as ‘1’). For 
experiment B, the differentiation of Borrmann type II 
(denoted as ‘0’) from III (denoted as ‘1’) was carried out 
only concerning Borrmann type II and III AGC patients. 

In each experiment, a random sample of 70% patients 
in center 1 was used for training, 30% were left out for 
internal validation, and patients in center 2 were used 
for external validation. Figure  1 illustrates the overall 
design in detail.

Two-dimensional (2D) radiomic feature extraction was 
initially conducted based on algorithms in Pyradiomics 
(version 2.1.1) and implemented by Python (version 3.7, 
https://www.python.org/), which was compliant with 
the Image Biomarker Standardization Initiative (IBSI) 
benchmarks.23 The image types included original im-
ages, Laplacian of Gaussian (LoG)-filtered images, and 
wavelet-filtered images. Herein, the LoG filter was an 
edge enhancement filter with the width of the Gaussian 
kernel set to 1.0, 3.0, and 5.0 mm. The wavelet filter 
used Coiflet1 to yield four decompositions by applying 
either a High or a Low pass filter in each of the two 
dimensions, including LH, HL, HH, and LL. All the CT 
image slices and corresponding ROI segmentations 
were interpolated with B-spline interpolation algorithm 
to have a uniform pixel spacing of 1.0 × 1.0 mm2, which 
helped ensure a common spatial resolution for the re-
producibility of radiomic features. The gray values were 
discretized into equally spaced bins using a fixed bin 
size of 10 Hounsfield Units to allow for different ranges 
of intensities in ROIs, while still keeping the texture and 
intensity-based features informative and comparable. 
A total of 758  radiomic features were extracted from 
each CT image, including 14 morphology features, 144 
intensity features, and 600 texture features (details are 
summarized in Table S2 and Text S4). All the extracted 
radiomic features were standardized by z-score method 
using the mean and standard deviation parameters cal-
culated based on the training cohort. The processed 
radiomic features should have mean values of 0 and 
standard deviation values of 1.

2.3  |  Training basic classification  
models

We trained basic classification models by integrating 
conventional feature selection methods and machine 
learning classifiers in the training cohorts based on R 
(version 3.6.0; https://www.r-proje​ct.org/; R packages 
are summarized in Text S5) and Python.

Three common feature selection methods 
(Figure 1C): the least absolute shrinkage and selection 
operator (LASSO),24 the minimum redundancy maxi-
mum relevance (mRMR),25 and recursive feature elimi-
nation (RFE)26 were adopted. The LASSO method uses 
L1 regularization to obtain sparse features and finds a 
potential feature representation. The mRMR algorithm 
calculates feature importance or ranking to generate a 
set of top ranked features. The RFE method adopts a 
backwards feature selection strategy to find the optimal 
feature subset.

http://www.itksnap.org
https://www.python.org/
https://www.r-project.org/
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Five typical machine learning classifiers in cancer 
prediction (Figure 1C): support vector machine (SVM),27 
decision tree (DT),27 NB,13 RF,28 and linear discriminant 
analysis (LDA)29 were used to construct classification 
models subsequently. The SVM maps the input vectors 
into a higher dimensional feature space and identifies 
a hyperplane to separate the data into two classes by 
maximizing the marginal distance between the hyper-
plane and the closest data points to boundary. DT acts 
as a tree-structured scheme that forms the inputs as 
nodes and creates the decision outcomes as leaves to 
specifically conjecture about the class of a new sam-
ple. NB is a probabilistic classifier based on Bayes’ 
rule and strong conditional independence assumption 
among features. RF combines randomly sampled tree 
vectors and gives the final predictive outcome that gets 
the majority of votes. LDA tries to find a linear com-
bination of features of different categories and in turn 
characterizes or distinguishes them.

Detailed hyperparameter and optimization settings 
of feature selection methods and machine learning 
classifiers are summarized in Text S6. In this study, we 
combined the feature selection methods and machine 
learning classifiers to give 15 basic classification mod-
els in experiment A and B, respectively.

2.4  |  MLP-based multimodel 
ensemble learning

Developments in MLP structures have enabled the 
ensemble learning of multiple model predictions.28 
The pioneering work of MLP focused on fully con-
necting neurons and training in a layer-by-layer 
fashion. In this study, we distilled this insight into ra-
diomic feature-based multimodel ensemble learning 
for Borrmann classification. The predictions of the 
15 basic classification models were used as the in-
puts and fed to our designed six-layer perceptron for 
ensemble learning. Figure  1D illustrates this layout 
schematically.

The main computational units of our ensemble MLP 
are six fully connected layers. The leftmost is the input 
layer with predictions of 15 basic classification mod-
els as neurons. The rightmost is the output layer with 
two neurons. The middle are fully connected layers in 
which we experiment with different numbers of hidden 
neurons. Specifically, we concatenate the outputs after 
the second fully connected layer and the original inputs 
to encourage the information flow.

The ensemble MLP was run for 100 epochs using 
a stochastic gradient descent optimizer, cross entropy 

F I G U R E  1   The overall study workflow, including (a) patient enrollment, (b) CT scan preprocessing, (c) basic classification model 
construction, and (d) ensemble MLP network development. LASSO, least absolute shrinkage selection operator; mRMR, minimum 
redundancy maximum relevance; RFE, recursive feature elimination; SVM, support vector machine; DT, decision tree; NB, naïve Bayes; RF, 
random forest; LDA, linear discriminant analysis; MLP, multilayer perceptron



      |  5
SPECIFIC BORRMANN CLASSIFICATION IN ADVANCED GASTRIC CANCER BY AN ENSEMBLE 
MULTILAYER PERCEPTRON NETWORK: A MULTICENTER RESEARCH

loss function, and a learning rate of 0.001 in a full batch 
learning, which meant that all the training samples 
were fed to the MLP in each iteration. The ensemble 
MLP was trained in Python using PyTorch (version 
1.3.0) and performed on a machine with an Intel Core 
i9-9900K CPU and 16 GB memory. For model avail-
ability, we have uploaded online the basic classification 
model parameters and weights as well as codes for the 
MLP network (please see http://www.radio​mics.net.cn/
post/137).

2.5  |  Model performance evaluation and 
statistical analysis

The classification ability of the ensemble MLP in ex-
periment A and B was compared with the 15 basic 
classification models, with regard to area under re-
ceiver operating characteristic (ROC) curves (AUC), 
specificity, sensitivity, and Youden index (= specific-
ity +sensitivity - 1).30 Also, we empirically assessed 
the clinical effectiveness of the ensemble MLP by 
decision curve analysis (DCA) and Kaplan–Meier 
survival analysis along with log-rank tests. In both 
experiments, we collected the overall survival (OS) 
information of AGC patients in external validation co-
hort, aiming to validate whether the predictions by 
ensemble MLP was also able to risk stratify the sur-
vival outcomes. The OS was measured from the date 
of surgery to the date of tumor-related death or the 
date of the last follow-up, which was patient-specific. 
Further in experiment B, subgroup analysis accord-
ing to clinical T/N stage was carried out to investi-
gate whether the ensemble MLP could differentiate 
Borrmann type II from III in certain subgroups.

In univariate analysis, two-sample t-test was used 
for numerical variables. A Fisher's exact test or chi-
square test was applied for categorical characteristics. 
A two-tailed P  <  0.05 represents a statistical signifi-
cance level. All the statistical analysis was conducted 
in R software.

3  |   RESULTS

3.1  |  Experiment A: specific 
identification of Borrmann type IV

3.1.1  |  Baseline clinical factors and 
radiomic feature discovery

As shown in Table 1 and Table S3, Borrmann type IV 
only occupied 18.4%, 10.1%, and 12.3% of the train-
ing, internal validation, and external validation cohorts, 
respectively. No significant differences between the 
training and internal validation cohorts were caught for 
the four clinical factors (P = 0.055–0.762). The clinical 

N stage was significantly associated with Borrmann 
type I/II/III vs. IV (P  =  0.028, 0.005, 0.021) in all the 
three cohorts. Radiomic feature discovery is shown in 
Figure 2A and explained in Table S4.

3.1.2  |  Model performance assessment

In internal validation cohort, the ensemble MLP (AUC: 
0.767, 95% confidence interval [CI]: 0.634–0.901) sur-
passed all the 15 basic classification models (AUCs: 
0.558–0.764) with a specificity of 0.667 and a sensitivity 
of 0.795 (Figure 2B). Performance of a junior radiologist 
with six-year experience was also compared. The radi-
ologist was shown CT images of all the Borrmann types 
and asked to judge patients as either Borrmann type I/II/
III or IV. The radiologist achieved excellent sensitivity but 
very low specificity. In external validation cohort, the en-
semble MLP achieved an AUC of 0.702 (95% CI: 0.627–
0.777), a specificity of 0.750, and a sensitivity of 0.610.

Detailed performance comparison with basic clas-
sification models is shown in Figure S1 and Table 
S5. Delong tests between each two models are il-
lustrated in a heatmap in Figure 2C and Figure S2a. 
Considering an over 4:1 ratio of Borrmann type I/II/III 
to IV, basic classification models seemed more likely 
to obtain very high sensitivity (median [range]: 0.870 
[0.652–0.950] in internal validation cohort, 0.645 
[0.504–0.879] in external validation cohort) and low 
specificity (0.500 [0.167–0.778] in internal validation 
cohort, 0.611 [0.250–0.861] in external validation co-
hort) (Figure 2D and Figure S3a). The ensemble MLP, 
in this case, achieved a highest Youden index of 0.462 
over all the basic classification models (Youden index, 
0.117–0.437) in internal validation cohort and a second 
highest Youden index of 0.360 in external validation 
cohort. We further presented the normalized confusion 
matrices for the ensemble MLP. As shown in Figure 
S4, the false positive rates and false negative rates 
were low, indicating that only a small part of misclassi-
fications took place. The false positive rates and false 
negative rates were similar in values, which indicated 
that the ensemble MLP misclassified Borrmann IV as 
I/II/III and Borrmann I/II/III as IV to a similar extent.

3.1.3  |  Clinical usefulness

Decision curves in internal validation cohort (Figure 2E) 
demonstrated that the ensemble MLP could provide 
more guidance than all Borrmann type IV scheme and 
no Borrmann type IV scheme. The median OS for all 
the AGC patients in center 2 was 28 months (observed: 
133/292, 45.5%). Patients could be significantly risk 
stratified by actual Borrmann types (Borrmann I/II/III vs. 
IV) and the ensemble MLP predicted Borrmann types 
(log-rank test, P < 0.0001, Figure 2F) where Borrmann 

http://www.radiomics.net.cn/post/137
http://www.radiomics.net.cn/post/137
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type IV patients were significantly associated with 
shorter OS and worse prognosis.

3.2  |  Experiment B: differentiation of 
Borrmann type II from III

3.2.1  |  Baseline clinical factors and 
radiomic feature discovery

Borrmann type II occupied 8.5%, 9.6%, and 28.9% 
of the three cohorts, respectively (Table S6). No sig-
nificant difference was captured between training and 
internal validation cohort in Borrmann classification 
(Chi-square test, P = 0.706). As analyzed in Table 2, 
clinical T stage and clinical N stage were both univari-
ately significant in all the three cohorts. Radiomic fea-
ture discovery is illustrated in Figure 3A and Table S7.

3.2.2  |  Classification performance 
evaluation of the ensemble MLP

The ensemble MLP still worked in experiment B. In 
internal validation cohort, the distinguishing ability 
of the ensemble MLP was indicated with an AUC of 

0.768 (95% CI, 0.626–0.911), a specificity of 0.714, 
and a sensitivity of 0.652. Individual radiologist per-
formances from one junior radiologist with 6-year 
experience and one intermediate radiologist with 10-
year experience are also plotted, below the ROCs of 
the ensemble MLP (Figure 3B). Here, the radiologists 
were shown only CT images of Borrmann type II and 
III patients, and they were informed that the dataset 
represented either Borrmann type II or III, and that 
they should decide between the two. In external vali-
dation cohort, the ensemble MLP reached an AUC of 
0.731 (95% CI, 0.664–0.799), a specificity of 0.620, 
and a sensitivity of 0.703.

Detailed performance comparison with basic clas-
sification models is given in Figure S5 and Table S8. 
Delong-test results between each two models in both 
validation cohorts are shown in Figure 3C and Figure 
S2b. Most basic classification models resulted in very 
high sensitivity (median [range]: 0.909 [0.523–1.000] 
in internal validation cohort, 0.937 [0.360–0.989] in 
external validation cohort) and corresponding low 
specificity (0.429 [0.000–0.786] in internal validation 
cohort, 0.254 [0.056–0.873] in external validation co-
hort). The ensemble MLP, however, could still com-
pensate for the balance of specificity and sensitivity, 
achieving Youden indices of 0.366 and 0.323 in both 

TA B L E  1   Baseline clinical factors of AGC patients in experiment A

Clinical factors

Center 1 (n = 597) Center 2 (n = 292)

Training cohort 
(n = 418)

P

Internal validation 
cohort (n = 179)

P

External validation 
cohort (n = 292)

P

Borrmann 
I/II/III 
(n = 341)

Borrmann 
IV (n = 77)

Borrmann 
I/II/III 
(n = 161)

Borrmann 
IV (n = 18)

Borrmann 
I/II/III 
(n = 256)

Borrmann 
IV (n = 36)

Age, years 0.075 0.792 0.801

Mean ±SD 64.0 ± 9.0 61.8 ± 9.9 63.9±10.3 63.3 ± 9.4 55.3 ± 9.4 55.7 ± 9.7

Sex, No. (%) 0.859 1.000 0.532

Male 247 (72.4) 55 (71.4) 119 (73.9) 13 (72.2) 197 (77.0) 26 (72.2)

Female 94 (27.6) 22 (28.6) 42 (26.1) 5 (27.8) 59 (23.0) 10 (27.8)

Clinical T stage, 
No. (%)

0.733 0.751 <0.001

T1 4 (1.2) 1 (1.3) 7 (4.3) 0 (0.0) 0 (0.0) 0 (0.0)

T2 51 (15.0) 8 (10.4) 27 (16.8) 3 (16.7) 45 (17.6) 1 (2.8)

T3 183 (53.6) 44 (57.1) 74 (46.0) 7 (38.9) 144 (56.2) 13 (36.1)

T4 103 (30.2) 24 (31.2) 53 (32.9) 8 (44.4) 67 (26.2) 22 (61.1)

Clinical N stage, 
No. (%)

0.028 0.005 0.021

N0 52 (15.2) 5 (6.5) 33 (20.5) 1 (5.6) 63 (24.6) 2 (5.5)

N1 153 (44.9) 30 (39.0) 68 (42.2) 9 (50.0) 54 (21.1) 6 (16.7)

N2 104 (3.5) 28 (36.4) 54 (33.5) 4 (22.2) 52 (20.3) 9 (25.0)

N3 32 (9.4) 14 (18.2) 6 (3.7) 4 (22.2) 87 (34.0) 19 (52.8)

Note: In univariate analysis, two-sample t-test was used for numerical variables. Fisher's exact test or Chi-square test was applied for categorical 
characteristics. AGC, advanced gastric cancer; SD, standard deviation.
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validation cohorts (Figure  3D and Figure S3b). We 
also presented the normalized confusion matrices for 
our ensemble MLP in internal and external validation 
cohorts in Figure S4.

3.2.3  |  Clinical use analysis

Decision curves in internal validation cohort (Figure 4A) 
demonstrated that the ensemble MLP could provide 
more net benefit than all Borrmann type II scheme or all 
Borrmann type III scheme in clinical practice. For sur-
vival analysis concerning Borrmann type II and III AGC 
patients in center 2, the median OS was 32.5 months 
(observed: 107/246, 43.5%). Patients could be signifi-
cantly separated into the high-risk and low-risk groups 
by actual Borrmann types (Borrmann II vs. III) with a 
log-rank test P  =  0.0025, indicating a worse progno-
sis of Borrmann type III than II. Meanwhile, Borrmann 
types predicted by ensemble MLP could also risk 
stratify AGC patients with a log-rank test P < 0.0001 
(Figure 4B).

For clinical T stage, AGC patients in center 1 were 
divided into T1, T2, T3, and T4 subgroups. For clinical 
N stage, we simply separated patients into N0 and N+ 
(N1, N2, and N3) subgroups. As illustrated in Figure 4C 
and 4D, the ensemble MLP showed better differentia-
tion ability in patients with more advanced clinical T/N 
stage.

4  |   DISCUSSION

Specific Borrmann classification can help determine 
more appropriate surgical margins and improve the 
prognosis for AGC patients. However, to the best of 
our knowledge, there is yet no radiomics research pre-
dicting specific Borrmann types. In this study, we ad-
vocated an MLP-based multimodel ensemble learning 
architecture, which could identify Borrmann type IV au-
tomatically and improve the differentiation of Borrmann 
type II from III.

Borrmann type IV AGC is characterized by diffuse in-
filtration to the gastric wall without ulceration or distinct 

F I G U R E  2   Results of experiment A. (a) Heatmap of univariate Pearson correlation coefficients between radiomic features and 
Borrmann types (I/II/III vs. IV). The upmost black lines summarized features selected by LASSO, mRMR, and RFE from left to right. (b) 
ROCs for ensemble MLP and junior radiologist performance. (c) Heatmap for Delong-tests between each two models in internal validation 
cohort. * represents a significant difference. (d) A line chart illustrating specificity, sensitivity, and Youden index in internal validation cohort. 
(e) Decision curves. (f) Kaplan-Meier curves by ensemble MLP predicted Borrmann I/II/III vs. IV types. LASSO, least absolute shrinkage 
and selection operator; mRMR, minimum redundancy maximum relevance; RFE, recursive feature elimination; TC, training cohort; IVC, 
internal validation cohort; EVC, external validation cohort; ROC, receiver operating characteristics; MLP, multilayer perceptron; JR, junior 
radiologist; DT, decision tree; NB, naïve Bayes; RF, random forest; LDA, linear discriminant analysis; SVM, support vector machine
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elevation.31 Because of the typical growth and morpho-
logic characteristics, it is sometimes difficult to recog-
nize the lesions in endoscopy examination. In contrast 
to endoscopy, high-contrast CT can perform better in 
lesion detection and characterization of Borrmann type 
IV.22 Although not reaching an equivalent level to CT 
diagnosis, the ensemble MLP enabled the automatic 
identification of Borrmann type IV, which may help ra-
diologists validate certain judgments. Furthermore, 
the incidence of Borrmann type IV is approximately 
10–20% of all GC,32 but it is usually regarded as an 
important independent prognostic factor.3,4 In accor-
dance with this, the significant risk stratification of AGC 
patients indicated by Kaplan-Meier survival curves in 
experiment A demonstrated similar prognostic power 
of actual Borrmann types and the ensemble MLP pre-
dicted types, which showed the acceptable classifica-
tion ability of the ensemble MLP to some extent.

On the other hand, Borrmann type II AGC differs 
from III in biological characteristics and treatment de-
cisions.33 Survival analysis proved that Borrmann 
type III usually had worse prognosis than II, which 
was consistent with previous studies and the clinical 
common knowledge.7 When differentiating the two 
types, Yan's study showed that the accuracies of de-
fining Borrmann type II and III were 79.7% and 80.0% 

on MDCT.5 However, CT might overclassify AGC be-
cause the extent of a microscopic tumor was greater 
than that of gross invasion.5 Under such circumstance, 
the ensemble MLP derived from CT-based radiomics 
enabled the differentiation of Borrmann type II from 
III with good AUCs and Youden indices, acting as an 
auxiliary tool to help determine more reliable Borrmann 
types. Radiologists with less experience in CT diagno-
sis could be benefitted, and their work intensity may 
be reduced. Furthermore, subgroup analysis in experi-
ment B showed that the differences between Borrmann 
type II and III were more easily captured in AGC pa-
tients with more advanced clinical T/N stage. More pre-
cise Borrmann classification may be defined for such 
patients preoperatively.

Analyses in both experiments were based on 2D 
CT image slices; however, our study for gastric can-
cer may not be limited by only using the largest image 
slices. As shown in Zhang et al.’s study,34 2D radiomic 
features (rather than 3D) were used to quantify gas-
tric tumor characteristics. They compared the radio-
mic features extracted from 2D CT image slices with 
those from 3D CT volumes, and found that most of the 
two types of features had high correlations. This im-
plied that 2D CT image analysis might be able to reflect 
enough information of the entire tumor to some extent. 

TA B L E  2   Baseline clinical factors of AGC patients in experiment B

Clinical 
factors

Center 1 (n = 486) Center 2 (n = 246)

Training cohort (n = 340)

P

Internal validation cohort 
(n = 146)

P

External validation 
cohort (n = 246)

P
Borrmann II 
(n = 29)

Borrmann III 
(n = 311)

Borrmann II 
(n = 14)

Borrmann 
III (n = 132)

Borrmann II 
(n = 71)

Borrmann III 
(n = 175)

Age, years 0.744 0.387 0.370

Mean±SD 62.9 ± 9.9 63.6 ± 9.3 61.8 ± 13.0 65.0 ± 9.3 55.9 ± 8.6 54.8 ± 9.4

Sex, No. (%) 0.065 0.906 0.332

Male 18 (62.1) 243 (78.1) 10 (71.4) 87 (65.9) 58 (81.7) 133 (76.0)

Female 11 (37.9) 68 (21.9) 4 (28.6) 45 (34.1) 13 (18.3) 42 (24.0)

Clinical T stage, 
No. (%)

<0.001 <0.001 <0.001

T1 3 (10.3) 5 (1.6) 1 (7.1) 1 (0.8) 0 (0.0) 0 (0.0)

T2 14 (48.3) 38 (12.2) 7 (50.0) 16 (12.1) 26 (36.6) 12 (6.8)

T3 12 (41.4) 165 (53.1) 5 (35.7) 69 (52.3) 35 (49.3) 106 (60.6)

T4 0 (0.0) 103 (33.1) 1 (7.1) 46 (34.8) 10 (14.1) 57 (32.6)

Clinical N 
stage, No. 
(%)

<0.001 0.002 0.029

N0 13 (44.8) 44 (14.1) 7 (50.0) 18 (13.6) 24 (33.8) 32 (18.3)

N1 14 (48.3) 139 (44.7) 6 (42.9) 53 (40.2) 16 (22.5) 36 (20.6)

N2 1 (3.4) 104 (33.4) 1 (7.1) 49 (37.1) 14 (19.7) 38 (21.7)

N3 1 (3.4) 24 (7.7) 0 (0.0) 12 (9.1) 17 (23.9) 69 (39.4)

Note: In univariate analysis, two-sample t-test was used for numerical variables. Fisher's exact test or Chi-square test was applied for categorical 
characteristics. AGC, advanced gastric cancer; SD, standard deviation.
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Moreover, Meng et al.’s study35 has revealed that 2D 
CT annotations might be better for GC-based radiomic 
studies because of a better performance than 3D CT 
annotations. Also, they pointed out that 3D annotations 
sometimes brought more noise, which may interfere 
with effective information. Thus, analyzing the largest 
CT image slices can be a good choice.

In our study, the main Borrmann type of AGC was 
III (69.5%), far more than the incidence of I, II, and IV 
(2.9%, 12.8%, and 14.7%), which was similar to the dis-
tribution of Borrmann types in previous studies.5,7 The 
imbalanced nature of Borrmann classification made 
conventional machine learning radiomics encounter 
the overfitting barrier more easily. From a large body of 

F I G U R E  3   Results of experiment B. (a) Heatmap of univariate Pearson correlation coefficients between radiomic features and 
Borrmann types (II vs. III). The upmost black lines summarized features selected by LASSO, mRMR, and RFE from left to right. (b) ROC 
curves for ensemble MLP and individual radiologist performances. (c) Heatmap for Delong-tests between each two models in internal 
validation cohort. * represents a significant difference. (d) A line chart illustrating specificity, sensitivity, and Youden index in internal 
validation cohort. LASSO, least absolute shrinkage and selection operator; mRMR, minimum redundancy maximum relevance; RFE, 
recursive feature elimination; TC, training cohort; IVC, internal validation cohort; EVC, external validation cohort; ROC, receiver operating 
characteristics; MLP, multilayer perceptron; JR, junior radiologist; IR, intermediate radiologist; DT, decision tree; NB, naïve Bayes; RF, 
random forest; LDA, linear discriminant analysis; SVM, support vector machine
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literature in cancer prediction, each machine learning 
method may outperform others but still has defects in 
different facets.18 Ensemble learning, however, is a vi-
able methodology. First, the basic classification models 
were based on three different feature selection methods 
that measured the relationship between radiomic fea-
tures and Borrmann types through different algorithms. 
Herein, LASSO generated the optimal feature subset via 
L1 regularization, RFE found the optimal feature subset 
via backwards feature selection, and mRMR calculated 
the feature importance/ranking. This may help provide 
more representative features. Second, the basic clas-
sification models were developed by using multiple ma-
chine learning classifiers that realized the classification 
tasks from complementary aspects of both linear re-
gression and non-linear regression. The linear SVM and 

LDA, for example, focused on simple fitting, whereas RF 
and DT may figure out more appropriate kernel functions 
and build more complex connections between radiomic 
features and Borrmann types. Third, the MLP integrating 
the predictions of basic classification models may take 
full advantage of different feature selection results and 
diversiform machine learning classifiers. And the en-
semble MLP produced multilevel features from hidden 
layers and encouraged feature reuse and information 
flow by feature concatenation. Specifically, optimizing 
the MLP with cross-entropy loss also helped alleviate 
the class imbalance problem quite well. The proposed 
networks are thus compatible. Nevertheless, other strat-
egies to deal with the class imbalance problem (e.g., un-
dersampling) may also be effective. That can be further 
explored in future studies.

F I G U R E  4   Results of experiment B. (a) Decision curves. (b) Kaplan-Meier curves by ensemble MLP predicted Borrmann types. (c) and 
(d) Subgroup analysis for ensemble MLP predicted Borrmann types based on clinical T/N stage. MLP, multilayer perceptron
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There are also some limitations. First, tumor ROIs 
were manually segmented, thus making it a labor-
intensive task. Automatic or semi-automatic seg-
mentation may be better. Second, we followed the 
recommendation of filtering after image resampling by 
the IBSI benchmarks, which may lead to the failure of 
estimating how strongly this would affect the wavelet 
feature values to some extent. Thirdly, pathological 
Borrmann classification may not be acquired in some 
centers. Fourthly, there remains domain shift between 
the datasets from different centers, causing the model 
performance decrease in external validation. Further 
improvements in relieving domain shift may help 
achieve better results.

5  |   CONCLUSIONS

In short, this study presented a CT radiomics-based 
ensemble MLP network and improved the specific 
Borrmann classification. The idea of this study not only 
posed focus on preoperative specific image-guided 
Borrmann classification in clinical practice, but also 
provided a non-invasive auxiliary tool for personalized 
strategy in AGC patients.
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