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a b s t r a c t 

Accurate lung nodule segmentation from computed tomography (CT) images is of great importance for 

image-driven lung cancer analysis. However, the heterogeneity of lung nodules and the presence of simi- 

lar visual characteristics between nodules and their surroundings make it difficult for robust nodule seg- 

mentation. In this study, we propose a data-driven model, termed the Central Focused Convolutional 

Neural Networks (CF-CNN), to segment lung nodules from heterogeneous CT images. Our approach com- 

bines two key insights: 1) the proposed model captures a diverse set of nodule-sensitive features from 

both 3-D and 2-D CT images simultaneously; 2) when classifying an image voxel, the effects of its neigh- 

bor voxels can vary according to their spatial locations. We describe this phenomenon by proposing a 

novel central pooling layer retaining much information on voxel patch center, followed by a multi-scale 

patch learning strategy. Moreover, we design a weighted sampling to facilitate the model training, where 

training samples are selected according to their degree of segmentation difficulty. The proposed method 

has been extensively evaluated on the public LIDC dataset including 893 nodules and an independent 

dataset with 74 nodules from Guangdong General Hospital (GDGH). We showed that CF-CNN achieved 

superior segmentation performance with average dice scores of 82.15% and 80.02% for the two datasets 

respectively. Moreover, we compared our results with the inter-radiologists consistency on LIDC dataset, 

showing a difference in average dice score of only 1.98%. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

Lung cancer is the leading cause for cancer related deaths and

carrying a dismal prognosis with a 5-year survival rate at only

18% ( Siegel et al., 2016 ). Treatment therapy monitoring and lung

nodule analysis ( Aerts et al., 2014 ) using computed tomography

(CT) images are important strategies for early lung cancer diagno-

sis and survival time improvement. In these approaches, accurate

lung nodule segmentation is necessary that can directly affect the

subsequent analysis results. Specifically, given the fact of growing

volumes of clinical imaging data, developing a data-driven segmen-

tation model is of great clinical importance to avoid tedious man-
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al processing and reduce inter-observer variability ( Kubota et al.,

011 ). 

Despite development of approaches for lung nodule segmenta-

ion in recent years ( Farag et al., 2013; Kubota et al., 2011; Lassen

t al., 2015 ), achieving accurate segmentation performance contin-

es to require attention because of the heterogeneity of lung nod-

les as shown on CT images ( Fig. 1 ). The presence of similar vi-

ual characteristics between nodules and their surroundings poses

 technical challenge for developing robust segmentation models.

or example, juxtapleural nodules ( Fig. 1 (b)) have an intensity sim-

lar to that of lung wall; thus, they are difficult to distinguish using

ntensity values only. In addition, cavitary nodules with black hole

nside ( Fig. 1 (c)) and calcific nodules ( Fig. 1 (d)) are challenging

ases because of the intensity dissimilarity within different part of

odules. Similarly, non-solid nodules such as ground-glass opacity

GGO, Fig. 1 (e)) are also problematic because a simple morpholog-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Example images of lung nodules with different locations and shapes in CT: (a) common isolated nodule. (b) juxtapleural nodule. (c) cavitary nodule. (d) calcific 

nodule. (e) ground-glass opacity (GGO) nodule. 
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cal operation is not suitable for these cases due to the fact of low

ntensity contrast in CT data ( Dehmeshki et al., 2008 ). 

Intensity-based methods using morphological opera- 

ion ( Diciotti et al., 2011; Messay et al., 2010 ) and region

rowing ( Dehmeshki et al., 2008; Kubota et al., 2011 ) have

een studied. Energy optimization methods including level

et ( Farag et al., 2013 ) and graph cut ( Ye et al., 2010 ) were also

esearched for lung nodule segmentation. However, the robustness

s still problematic especially for segmenting juxtapleural nodules.

or example, in morphology-based methods, the morphological

emplate size is difficult to generalize with nodules of various

iameters ( Kubota et al., 2011 ). Sophisticated methods can process

uxtapleural nodules by applying a shape constraint ( Farag et al.,

013; Keshani et al., 2013 ) or relying on user interactive parameter

ettings ( Messay et al., 2015 ). However, it may not be applicable

or irregular shaped nodules where the shape hypothesis can be

iolated. In addition, user interactive parameters such as well

entralized seed point ( Messay et al., 2015 ) or stroke ( Lassen

t al., 2015 ) are difficult to tune for different types of nodules. The

imitations of directly applying raw intensity value for segmenta-

ion suggest the need of novel solutions for capturing high-level,

odule-sensitive features from CT volumes. 

Recently, convolutional neural networks (CNN) have been

merged as powerful tools for learning discriminative feature hi-

rarchies adapted to different vision tasks ( Havaei et al., 2016;

hen et al., 2016 ). Benefiting from the unique feature learning abil-

ty from hierarchical network layers, CNN models have shown en-

ouraging results in medical image segmentation tasks ( Moeskops

t al., 2016; Valverde et al., 2017; Zhang et al., 2015 ), indicating the

sefulness of CNN-based models for medical object segmentation.

owever, the applicability of developing CNN-based approaches to

odel heterogeneous lung nodule CT volumes (as seen in Fig. 1 )

as remained uncertain. In particular, the design of network hier-

rchy that is capable of capturing both 2-D and 3-D lung nodule

eatures has not been explicitly addressed. 

In this study, we investigate the problem of developing a deep

ierarchy of convolutional neural networks in the context of lung

odule segmentation. We follow a voxel classification scheme that

ims to distinguish nodule voxels from healthy voxels in CT im-

ges. In addressing the challenge of analyzing heterogeneous CT

ata, we propose a central focused convolutional neural networks

CF-CNN) that is adaptive to lung nodule segmentation for various

ypes of nodules. Overall, our technical contributions in this work

re four-fold: 

1. The proposed CF-CNN model can achieve appealing segmenta-

tion performance for a variety of lung nodules especially for

juxtapleural nodules without nodule shape hypothesis or user-

interactive parameter setting ( Fig. 1 ). 

2. We present a two-branch CNN structure to leverage both 3-

D features and multi-scale 2-D features. The 3-D-patch branch

learns multi-view features from multiple CT slices and the 2-

D-patch branch learns multi-scale features through multiple 2-

D patches. The multi-scale patch strategy enables the model

to learn multi-scale features without involving multiple net-

works ( Shen et al., 2015 ) ( Section 2.1.2 ). 
3. We design a novel central pooling layer to retain much patch-

center features rather than patch edge features. This strategy

reserves much target-voxel-focused information and thereby

achieved improved performance as opposed to uniformly dis-

tributed max pooling ( Section 2.1.3 ). 

4. During model training, we propose a sampling method to pro-

cess imbalanced training labels and extract challenging patches

to allow efficient model training. In this strategy, voxels are

sampled where each voxel is assigned a weight score denoting

its difficulty for segmentation ( Section 2.3 ). 

.1. Related work 

Approaches for lung nodule segmentation involved the detec-

ion of a Volume of Interest (VOI) covering the nodule area and

egmentation inside this VOI. These methods can be generally clas-

ified into morphology methods ( Diciotti et al., 2011; Messay et al.,

010 ), region growing methods, ( Kubota et al., 2011; Song et al.,

016 ), energy optimization methods ( Farag et al., 2013; Lassen

t al., 2015 ), and machine-learning methods ( Lu et al., 2013; Wu

t al., 2010 ). 

In morphology methods, morphological operations such as logic

pening operation were applied for nodule-attached vessels re-

oval ( Kostis et al., 2003 ), then the connected component se-

ection can separate lung nodules. However, the fixed-size mor-

hological template is difficult to separate nodules that usually

ave wide contact surfaces with other anatomical objects. Con-

equently, more complex morphological operations that combine

hape hypothesis were introduced. For instance, Kuhnigk et al.

2006) showed that the radius of vessels decreases while the ves-

els evolve along the periphery of the lungs. In addition, rolling

all filters ( Messay et al., 2010 ) combined with rule-based analy-

is was also proposed for juxtapleural nodules. One notable diffi-

ulty for morphology methods is the morphological template size

election ( Kubota et al., 2011 ), because it is difficult to find a

uitable morphology template for various size of nodules. Non-

olid nodules in particular are challenging for morphology oper-

tion ( Diciotti et al., 2011 ). 

In region growing methods, segmentation starts with a user-

pecified seed point, and voxels are included into nodule set it-

ratively until the pre-defined converge criterion is satisfied. These

ethods work well for isolated nodules. However, when analyzing

uxtapleural nodules, region growing algorithm is known to be dif-

cult to converge. Therefore, Dehmeshki et al. (2008) introduced

 shape hypothesis and proposed sphericity contrast based region

rowing method to detach nodule from lung wall. Instead of using

he current voxel intensity only, Kubota et al. (2011) constructed

 probability map to denote the likelihood of each voxel belong-

ng to nodule according to the local intensity value, then a re-

ion growing method was used to separate the nodule from back-

round area. The common challenge for region growing methods

s the converge criteria. Although shape constraint can be consid-

red, irregular-shaped nodules remain difficult to process because

he shape hypothesis can be violated. 

In energy optimization methods, nodule segmentation is con-

erted into an energy minimization task. The level-set-based meth-
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ods, for example, use a level set function to describe the im-

age, and the function is minimized when the segmented contour

matches the nodule boundary ( Chan and Vese, 2001 ). To detach

nodules from lung wall, Farag et al. (2013) combined level set with

shape prior hypothesis. In addition, graph cut algorithm ( Boykov

and Kolmogorov, 2004 ) was developed for lung nodule segmenta-

tion by framing the problem into a maximum flow optimization

task. Ye et al. (2010) used a modification of the graph cut method.

Such algorithm built an intensity and shape mode map through

non-parametric mean shift clustering. Then, the graph cut algo-

rithm was used for segmentation by using an energy formulation.

However, similar to the region growing methods, the performance

of these methods are typically adversely affected by juxtapleural

nodules and low contrast nodules (e.g., GGO). 

In machine-learning methods, researchers used classification

models combined with high-level features for nodule segmenta-

tion ( Lu et al., 2008; 2011 ). For instance, Wu et al. (2010) de-

signed a set of texture and shape features to represent voxels. Af-

terwards, a conditional random field (CRF) model was trained for

voxel classification. In addition, Lu et al. (2013) designed the spa-

tial image features such that voxels of different nodule types were

mapped into the same universal space. These high-level features

were shown to be translation and rotational invariant. 

As one of the data-driven methods, CNNs are conceptually sim-

ilar to the previous machine-learning-based methods converting

the segmentation task into voxel classification. A CNN model ( Gao

and Zhou, 2016; Shen et al., 2017 ) is a multi-layer neural network

that learns hierarchical mappings between raw image data and la-

bels. In medical image analysis, Ciresan et al. (2012) applied a CNN

to neuronal membranes segmentation in electron microscopy im-

ages, where the segmentation task is converted into pixel classi-

fication. Also, Zhang et al. (2015) used a CNN model to segment

brain matter in a voxel patch classification manner. In addition,

CNN models using multi-view image patches ( Prasoon et al., 2013 )

or multiple branches ( Havaei et al., 2016 ) have been designed to

extract features that are adaptive to different medical objects. On

the other hand, fully convolutional neural networks (FCN) ( Long

et al., 2015 ) have been another trend for image segmentation. The

FCN model involves up-sampling layers to make the output of CNN

having the same size with the input image, and therefore requires

only one forward propagation to segment the input image. For in-

stance, Ronneberger et al. (2015) and Çiçek et al. (2016) proposed

the U-Net model as a type of FCN approaches for biomedical image

segmentation. 

The major distinctions of the proposed CF-CNN model compar-

ing to the previous approaches are three-fold: 1) we proposed a

two-branch CNN architecture to learn both multi-view 3-D features

and local texture features simultaneously; 2) we combined multi-

scale patches into a multi-channel patch that enables multi-scale

feature extraction without involving multiple networks; 3) we pro-

posed a novel central pooling layer to select features according to

their spatial relevance to the target voxel (i.e., patch center voxel). 

This paper is organized as follows. A detailed description of

the proposed CF-CNN model is presented in Section 2 . Exper-

imental datasets and implementation details are introduced in

Section 3 . Section 4 provides the overall performance for the pro-

posed method. Finally, Section 5 discusses the model design details

and conclusion. 

2. Methods 

2.1. Model architecture 

The proposed CF-CNN model utilizes 3-D and 2-D views of CT

imaging for lung nodule segmentation ( Fig. 2 ). Given one voxel in

CT images, we extract a 3-D patch and a 2D multi-scale patch cen-
ered on this voxel as the input to the CNN model, and predict if

his voxel belongs to the class of nodule or healthy tissues. 

.1.1. CNN structure 

The network includes two deep branches sharing the identi-

al structure but are trained using different image patches. Each

ranch of the proposed CNN architecture consists of six convolu-

ional layers, two central pooling layers (see detailed description

n Section 2.1.3 ), and one fully connected layer. The six convolu-

ional layers in this CNN are divided into three blocks, where each

lock shares the exact same structure including two convolutional

ayers of kernel size 3 × 3. These layers perform convolution oper-

tions on all input feature maps to obtain the output feature map

efined by 

f j = P ReLU 

( ∑ 

i 

c i j ∗ f i + b j 

) 

(1)

here f i and f j are the i th input feature map and j th output feature

ap, respectively. We define c ij as the convolutional kernel be-

ween f i and f j ( ∗ denotes the 2-D convolution operation). b j is the

ias of the j th output feature map. To accelerate training process,

very convolutional layer is followed by batch normalization op-

ration to normalize the corresponding output ( Ioffe and Szegedy,

015 ). 

After each convolutional layer, a parametric rectified linear unit

PReLU) ( He et al., 2015 ) is used as nonlinear activation function

xpressed as 

 ReLU 

(
f j 

)
= 

{
f j if f j > 0 

a j f 
j if f j ≤ 0 

(2)

In this equation, a j is a trainable parameter and j represents

he j -th feature map in this convolutional layer. In our experiment,

 j is initialized to be 0.25. The PReLU incorporates a non-zero

lope controlled by the trainable parameter a j for negative inputs

nd has been proven to be more effective than the conventional

eLU ( Krizhevsky et al., 2012 ) in ImageNet classification tasks. Be-

ween each block, we formulate a novel pooling method, termed

entral pooling, to select feature subsets from convolutional layers

more detailed description is provided in Section 2.1.3 ). 

After the last convolutional layer ( Fig. 2 , C6), a fully connected

ayer is applied where each output unit connects to all inputs. This

ayer can capture correlations between different features produced

y convolutional layer. For the purpose of achieving nonlinearity,

ReLU is also used as an activation function after the fully con-

ected layer. At the end of the model, the two CNN branches are

ombined by concatenating their fully connected layers ( Fig. 2 , F7).

inally, another fully connected layer ( Fig. 2 , F8) is applied to cap-

ure the correlations between the features from two CNN branches.

In the case of the output layer consisting of two units, the acti-

ation values are fed into a binary softmax function that are con-

erted into probability distributions over the class labels. Namely,

uppose that o k is the k th output of the network for a given in-

ut, the probability assigned to the k th class is the output of the

oftmax function: 

p k = exp ( o k ) / 
∑ 

h ⊆{ 0 , 1 } 
exp ( o h ) (3)

here k = 0 and k = 1 represent non-nodule and nodule voxels re-

pectively. 

The goal of network training is to maximize the probability of

he correct class. This is achieved by minimizing the cross-entropy

oss for each training sample. Suppose that y is the true label for a

iven input patch that belongs to {0,1}, the loss function is defined
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Fig. 2. Illustration of the proposed CF-CNN architecture. The network contains six convolutional layers (C1–C6), two central pooling layers (central pooling 1 and central 

pooling 2), and two fully connected layers (F7, F8). The convolutional kernel size is denoted as filter number @ filter width × filter height (i.e., 36@3 × 3 represents 36 filters of 

kernel size 3 × 3). The number below each layer indicates the feature map size after convolution. After feeding all voxels into this CNN model, a probability map assigning 

each voxel the probability of it belonging to nodule is obtained. The bottom figure illustrates 16 randomly selected feature maps of the first convolutional layer (the first 

row is from the 3-D-patch CNN branch, the second row is from the 2-D-patch CNN branch). The feature maps indicate that the learned convolutional kernels can respond 

to various types of image characteristics such as edge or lung wall. 
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s: 

 ( W ) = − 1 

N 

N ∑ 

n =1 

[
y n log ˆ y n + ( 1 − y n ) log 

(
1 − ˆ y n 

)]
+ λ| W | (4)

here ˆ y n represents the predicted probability from CNN and N is

he number of samples. To avoid over fitting, the 1 − norm regu-

arization is used on the model weights W. λ controls the regu-

arization strength, and is set to 5 × 10 −4 in our model. The loss

unction is minimized during the model training process by com-

uting the gradient of L over the network parameters W . During

his process, the model weights W are initialized with the Xavier

lgorithm ( Glorot and Bengio, 2010 ), and are updated using the

tochastic gradient descent (SGD) algorithm ( Havaei et al., 2016 )

s shown in Eq. (5) . 

 t+1 = W t + V t+1 , V t+1 = μV t − α � L ( W t ) (5)

n this equation, t represents the training iteration number, and V

s the update value initialized at zero. When calculating the gra-

ient � L ( W ), only a batch of 128 samples are used, because it

s difficult to store millions of training samples at memory one

ime ( Krizhevsky et al., 2012 ). μ is the momentum that is set to 0.9

n our model. α is the learning rate which is updated using Eq. (6) ,

nd α0 is the base learning rate which is initialized to 6 × 10 −5 . γ
nd p are set to 0.0 0 01 and 0.75 respectively. 

t+1 = α0 (1 + γ t) 
−p 

(6) 

.1.2. Two-branch architecture 

The proposed two-branch network structure is designed to cap-

ure both 3-D and 2-D information simultaneously. 

The 3-D-patch branch takes a 3-D volume of size 3 × 35 × 35

s input. Specifically, given one voxel, we extract a cuboid cen-

ered on this voxel that spreads the current, preceding and sub-

equent slices (see Fig. 2 ). This three-slice volume is treated as a
hree-channel image and is fed into the 3-D-patch CNN branch.

ue to the large variance of CT image intensities, we normalize

he three-channel patch using z-score that is defined as f ( x ) =
( x − x mean ) /x std . In this equation, x mean and x std represent the av-

rage and stand deviation of voxel intensities in the patch. 

In parallel, we introduce a 2-D branch in attempt to focus on

earning features from axial view images due to their high image

esolution among all CT scans. We design the 2-D CNN branch to

odel the relationship between two scale patches jointly through

onvolutional layer. First, we extract two patches of size 65 × 65

nd 35 × 35 on the target voxel. Then, we rescale them into the

ame size (35 × 35) using third-order spline interpolation to form

 two-channel patch, and feed it into the 2-D CNN branch. The de-

ned multi-scale patch strategy enables the model learning multi-

cale features within one network instead of training multiple sep-

rate networks. 

.1.3. Central pooling 

For a given image patch, it is intuitive that the voxels close to

atch center are more relevant to the target voxel, whereas the

atch edge voxels are less relevant. Therefore, we propose a cen-

ral pooling operation to reserve many features around patch cen-

er as opposed to the traditional max pooling that has ignored the

eature location information. 

Fig. 3 (a) is the traditional max pooling operation where pooling

ernels share the same size and are uniformly distributed on input

mage, while Fig. 3 (b) illustrates the proposed central pooling pro-

ess where the pooling kernel size varies according to the pooling

osition. In our design, we adopt small pooling kernels around im-

ge center and large pooling kernels around image edge. Since we

ntend to predict the label of the patch center voxel, the proposed

entral pooling is helpful to largely eliminate irrelevant patch edge

eatures while retain patch center features at the same time. 
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Fig. 3. Central pooling process. (a) Traditional max pooling using 2 × 2 kernel and 2 voxel step. The pooling kernels are of the same size and are uniformly distributed. (b) 

Central pooling. The pooling kernel size varies according to the pooling position, and are non-uniformly distributed on input image. The pooling operation is firstly applied 

among rows, where we use small pooling kernels around image center, while large pooling kernels near image edge. Afterwards, we use the same pooling operation among 

columns. For the pooling kernel of size 2 and 3, the maximum value in a pooling window is selected as output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Look-up table L . 

Kernel size Residual r 

0 1 2 3 4 5 6 7 

s = 1 0 1 0 1 0 0 0 0 

s = 2 0 0 1 1 2 1 3 2 

s = 3 0 0 0 0 0 1 0 1 

Note: Given a residual r ∈ [0, 7], this table assigns the 

number for the three types of kernels (s = 1, 2, 3) such 

that they can cover the r voxels. 

Fig. 4. Traditional max pooling and central pooling comparison. (a) Data patch. (b) 

A feature map from the first convolutional layer in CF-CNN model ( Fig 2 ). (c) Tradi- 

tional max pooling of the feature map. (d) Central pooling of the feature map. The 

color in this figure represents the voxel values in the feature map. Red denotes big 

value and blue represents small value. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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This central pooling involves two parameters: 1) the size for

different pooling kernel; 2) the number for each type of pooling

kernel. In our work, we introduce three types of max pooling ker-

nels (kernel size s = 1, 2, 3). The number for each type of ker-

nels can be determined combining with the following rules: 1) we

follow that the central pooling normally reduces the input image

size by half on each axis as widely used in traditional max pool-

ing ( Havaei et al., 2016; Zhang et al., 2015 ); 2) to avoid large distor-

tion caused by the non-uniformly distributed pooling kernel, we let

half amount of all pooling kernels be 2 voxel size which is a com-

mon parameter used in traditional max pooling operation ( Shen

et al., 2017 ). After the number for three types of pooling kernels

are determined, we symmetrically distribute all the kernels. For

example, small pooling kernels (s = 1) are distributed around the

image center, large kernels (s = 2, 3) are distributed close to the

image edge symmetrically. 

Given an input image of size O × O , the number n 1 , n 2 , and n 3
for the three types of kernels can be determined using Eq. (7) . { 

n 1 + 2 n 2 + 3 n 3 = O 

n 1 + n 2 + n 3 = O/ 2 

n 1 + n 3 = n 2 

(7)

The first equation ensures that the total length of all pooling ker-

nels equals the input image size. The second equation denotes that

after central pooling, the output image size is half of the input

image size. The third equation ensures that half amount of pool-

ing kernels are 2 voxel size. The unique solution of Eq. (7) is that

n 1 = O/ 8 , n 2 = O/ 4 , and n 3 = O/ 8 . However, O may not be divisi-

ble by 8 or 4. We solve this problem in two steps: 1) first, we let

n 1 = � O/ 8 � , n 2 = � O/ 4 � , and n 3 = � O/ 8 � , where � · � denotes the

rounding down operation. After this operation, there is a residual r

∈ [0, 7] left (produced by O/ 8 − � O/ 8 � ); 2) then, we build a look-

up table L ( Table 1 ) to assign the number for the three types of

kernels to cover the r voxels. Finally, n 1 , n 2 , and n 3 are determined

using Eq. (8) { 

n 1 = � O/ 8 � + L [1 , r] 
n 2 = � O/ 4 � + L [2 , r] 
n 3 = � O/ 8 � + L [3 , r] 

(8)

In Eq. (8) , L [ i, r ] represents the value at the i th row and the

r th column of the look-up table. For instance, when the input im-

age is 9 × 9, then n 1 = 1 + 1 = 2 , n 2 = 2 + 0 = 2 , n 3 = 1 + 0 = 1 .

Afterwards, these kernels are symmetrically distributed on the in-

put image, which is in the kernel size order of {3, 2, 1, 1, 2} for
his case. Since 2-D pooling kernels of different size cannot be dis-

ributed continuously on the input image, we use 1-D pooling ker-

el to do row pooling first and column pooling afterwards. This

entral pooling process is illustrated in Fig. 3 (b). 

For a better understanding of the difference between central

ooling and traditional max pooling, Fig. 4 shows the pooling re-

ults for one convolutional feature map using these two pooling

ethods. The central pooling reserves more information around

he feature map center compared with traditional max pooling. 

.2. 3-D processing 

To initialize the proposed CF-CNN model, a bounding cuboid for

he nodule is specified to enable voxel classification within such

uboid. Because a nodule is typically spread over multiple slices,

he process of manually specifying bounding cuboid is tedious. We

vercome this problem by only specifying a bounding box on one

lice which is called the starting slice (S1 in Fig. 5 ). 
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Fig. 5. Three-dimensional segmentation procedure. The bounding box is only specified on one slice designated the starting slice, and then applied to the preceding and 

following slices iteratively. The number on the right side of each slice is the area of the nodule counted in voxels. The column on the left displays the original CT slices 

and the middle column shows the outcome of the CF-CNN model, where the red and blue regions represent nodules and false positive noises, respectively (the latter one is 

earmarked for removal). The image on the right is the 3-D visualization of the ultimate segmentation outcome. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 6. Illustration of weighted sampling process. (a) A CT image in training set. 

The green box is acquired by expanding eight voxels on each axis of the nodule 

bounding box. (b) nodule voxel weight distribution. (c) non-nodule voxel weight 

distribution. (d) random sampling result. (e) weighted sampling result. Yellow and 

blue crosses denote sampled nodule and non-nodule voxels, respectively. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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The same bounding box is then applied to the preceding and

ubsequent slice repeatedly until at least one of the following

wo experimental conditions are satisfied: 1) no segmented nod-

le voxel exists in this slice ( Fig. 5 , slice S6) or 2) the nodule area

n this slice is less than 30% of the nodule area in the preceding

lice. For instance, slice S3 in Fig. 5 is eliminated because the seg-

ented nodule only contains four voxels, which is only 10% of the

ize of the preceding slice (slice S2). To remove noisy voxels such

s isolated tiny regions during 3-D process (blue R1 in slice S5),

e made a simple connected component selection as following:

) when the noise arises in the starting slice, we select the iso-

ated region that is closest to the bounding box center. 2) when

he noise arises in other slices, we select the isolated region whose

assive center is closest to the massive center in the nodule of

he preceding slice. For instance, two segmented candidate regions

1 and R2 are generated by the CF-CNN in slice S5. The distances

etween the massive center in these two regions and that of the

receding nodule (slice S4) are denoted as d1 and d2. Since d2 <

1, region R2 is reserved and R1(noise) is discarded. 

.3. Training sample selection 

Since our method focuses on learning CNN-based features from

mages automatically, large amount of voxel patches (as training

amples) are greatly needed to facilitate the model training. How-

ver, lung nodule segmentation is a highly data imbalanced prob-

em where nodule voxels usually counted less than 5% of the total

oxels in one CT slice. Selecting training voxel patches randomly

ould easily cause model to be overwhelmed by non-nodule fea-

ures. Therefore, we propose a weighted sampling strategy to se-

ect only part of the whole voxel patches according to their degree

f segmentation difficulty. First, we identify the nodule bounding

ox for each CT slice in training set, and expand eight voxels on

ach axis to get an expanded box (the green box in Fig. 6 (a)). Then,

or each voxel inside this expanded box, we assign them a weight

core indicating their segmentation difficulty. Finally, 40% nodule
oxel patches and the same amount of non-nodule voxel patches

re sampled according to their corresponding weight score. In this

rocess, we sample nodule and non-nodule voxel patches sepa-

ately to balance the training labels. 

When choosing nodule patches, we intend to sample more nod-

le edge patches rather than nodule center patches, because nod-

le edges typically contain more texture information for segmen-

ation. Consequently, our goal of finding challenging nodule voxels

s converted into finding nodule edge voxels. This process can be

ormulated by assigning each nodule voxel i a weight PW i using

he distance function defined in Eq. (9) . 

 W i = exp 

(
− min 

j⊆N 
d ( i, j ) 

)
/Z (9) 

In this equation, N is the non-nodule voxel set, and d ( i, j ) is the

uclidean distance between nodule voxel i and non-nodule voxel j.

 is a normalization factor to make the weight of all voxels accu-

ulated to 1. PW i is a number between [0, 1] which demonstrates

he weight of the current nodule voxel being sampled. Fig. 6 (b) vi-

ualizes the nodule voxel weight distribution of one nodule slice

 Fig 6 (a)) using this method. 
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Table 2 

Characteristic distributions of the LIDC training, validation and test- 

ing sets. Values are shown in mean ± standard deviation. 

Characteristics Training set Validation set Testing set 

(n = 350) (n = 50) (n = 493) 

Diameter (mm) 9.48 ± 4.89 9.21 ± 5.03 9.35 ± 4.88 

Spiculation 1.72 ± 0.86 1.65 ± 0.74 1.71 ± 0.87 

Lobulation 1.87 ± 0.81 1.81 ± 0.69 1.82 ± 0.81 

Sphericity 3.84 ± 0.62 3.79 ± 0.63 3.86 ± 0.59 

Calcification 5.67 ± 0.78 5.57 ± 0.90 5.63 ± 0.87 

Malignancy 3.05 ± 0.91 3.01 ± 1.04 4.15 ± 0.97 

Note: All characteristic values except diameter and calcification are 

on ordinal scale of 1–5, while calcification value ranges from 2 to 

6. Spiculation and lobulation represent the amount of these shapes 

that present in one nodule. Sphericity, calcification, and malignancy 

represent the likelihood of these characteristics in one nodule. The 

characteristics on three sets are without significant statistical dif- 

ference. 
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When choosing non-nodule patches, the challenge voxels are

from nodule-attached lung wall and vessels. We identify these vox-

els from two considerable aspects: 1) we utilize a distance function

to assign each voxel a weight which decreases as the voxel apart

from nodule area. 2) we intend to eliminate the dark lung field

area, since they usually have very low intensity and can be eas-

ily distinguished from nodule voxels. This process is formulated by

assigning each non-nodule voxel i a weight NW i using Eq. (10) , 

NW i = I i exp 

(
− min 

j⊆P 
d ( i, j ) 

)
/Z (10)

where P is the nodule voxel set, and d ( i, j ) is the euclidean distance

between non-nodule voxel i and nodule voxel j . Since the dark lung

field area can also get a high response similar to lung wall, we

multiply the normalized CT image intensity I i to the exp () function

to eliminate the dark lung field area. Fig. 6 (c) illustrates the weight

distribution for non-nodule voxels. 

Finally, 40% nodule voxels were sampled according to PW i , and

the same amount of non-nodule voxels were sampled accord-

ing NW i . Compared with random sampling ( Fig. 6 (d)), our strat-

egy ( Fig. 6 (e)) selected more nodule edge and nodule-attached

lung wall voxels which were particularly useful for training CNN

models. 

3. Data and experiment 

3.1. Data 

We used two datasets in our experimental evaluation. The first

one is a publicly available dataset from the Lung Image Database

Consortium and Image Database Resource Initiative (LIDC). The

second dataset is independently collected from Guangdong General

Hospital (GDGH). 

LIDC dataset : The dataset contains CT images of 2610 lung

nodules from seven academic centers and eight medical imaging

companies around the world ( Armato et al., 2011; Setio et al.,

2016 ). Nodule diameters in this dataset range from 2.03 mm

to 38.12 mm, and the slice interval ranges from 0.45 mm to

5.0 mm. The axial plan resolution varies from 0.46 mm ×
0.46 mm to 0.98 mm × 0.98 mm. All the nodules are annotated

by up to four board-certified radiologists. In this work, we studied

nodule samples that are annotated with available four radiologists

(a total of 893 nodules). Because of the inter-variability among

four different radiologists, a 50% consensus criterion ( Kubota et al.,

2011 ) is adopted to generate a ground-truth boundary. For all the

893 selected nodules, each expert has been asked to independently

assess multiple subjective clinical characteristics including spheric-

ity, spiculation, and the likelihood of malignancy ( Armato et al.,

2011 ). 

We randomly partitioned the 893 nodules into three subsets in-

cluding training, validation and testing sets that are comprised of

350, 50 and 493 nodules respectively. As seen in Table 2 , the three

subsets share similar statistical distributions of clinical character-

istics. We train the CF-CNN model only on the training set, and

the validation set is used for determining the CNN training epoch

number. Finally, the testing set is used for performance evaluation.

GDGH dataset : The second dataset from Guangdong General

Hospital consists of 74 patients with single nodules. Nodule diam-

eters range from 1.64 mm to 58.94 mm with the average diam-

eters (mean ± standard deviation) of 25.79 ± 12.47 mm. The CT

slice interval varies from 1.25 mm to 2.5 mm with the axial plan

resolution ranging from 0.61 mm × 0.61 mm to 0.88 mm ×
0.88 mm. All nodules were annotated by an experienced radiol-

ogist and verified by another radiologist (10+ years experience) in

thoracic imaging of lung lesions. To further validate the segmen-

tation performance, after obtaining the trained CF-CNN model on
IDC dataset, we directly evaluate the segmentation results by test-

ng on this independent nodule set. 

.2. Evaluation criteria 

Given the ground truth segmentation Gt and automated seg-

entation result Auto , the dice similarity coefficient (DSC) and

ymmetric average surface distance (ASD) are used as the primary

valuation criteria for assessing the automatic segmentation ac-

uracy. DSC is a widely used metric for measuring the overlap

etween two segmentation results ( Havaei et al., 2016; Valverde

t al., 2017 ), and ASD measures the average boundary distance be-

ween surfaces of two segmentation results ( Gao et al., 2016 ). In

ddition, we also use the sensitivity (SEN) and positive predictive

alue (PPV) to demonstrate the voxel classification accuracy ( Gao

t al., 2016 ). Full definitions are listed as in Eq. (11) to Eq. (13) : 

SC = 

2 · V ( Gt 
⋂ 

Auto ) 

V ( Gt ) + V ( Auto ) 
(11)

SD = 

1 

2 

(
mean i ∈ Gt min j∈ Auto d ( i, j ) + mean i ∈ Auto min j∈ Gt d ( i, j ) 

)
(12)

EN = 

V ( Gt 
⋂ 

Auto ) 

V ( Gt ) 
, P P V = 

V ( Gt 
⋂ 

Auto ) 

V ( Auto ) 
(13)

here V is the volume size counted in voxels and d(i,j) denotes

he Euclidean distance between voxel i and voxel j measured in

illimeters. 

.3. Implementation details 

In our experiment, we generated 0.41 million voxel patches

n the LIDC training set using the weighted sampling method

 Section 2.3 ). When each training epoch was completed, the CF-

NN model was tested on the validation set and evaluated by

he DSC value. After 21 epochs of training, the DSC on valida-

ion set became stable, therefore, we decided to train the CF-CNN

odel for 21 epochs. Finally, the model performance was evaluated

n the independent testing set. Our method was implemented in

ython 2.7 and all experiments were performed on a machine with

n Intel Core i7-4790K CPU and 8GB memory. The CNN was imple-

ented using CAFFE Toolkit ( Jia et al., 2014 ) and was accelerated

n an NVIDIA GTX-980Ti GPU (6GB on-board memory). The CF-

NN model converged after 9 h of training on 0.41 million voxel

atches. 
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Table 3 

Mean ± standard deviation of quantitative results for various segmentation methods. 

The best performance is indicated in bold font. 

LIDC Set DSC (%) ASD (mm) SEN (%) PPV (%) 

Level Set 60.63 ± 17.39 0.48 ± 0.25 64.38 ± 22.75 71.03 ± 24.35 

Graph Cut 68.90 ± 16.03 0.48 ± 0.30 80.81 ± 15.25 65.09 ± 22.42 

U-Net 79.50 ± 13.95 0.24 ± 0.23 86.81 ± 18.43 78.18 ± 16.13 

3-D-Patch Branch 79.20 ± 11.88 0.21 ± 0.17 90.93 ± 14.72 72.91 ± 13.73 

2-D-Patch Branch 80.47 ± 11.23 0.18 ± 0.15 91.36 ± 14.40 74.64 ± 13.16 

CF-CNN-MP 80.39 ± 11.90 0.18 ± 0.15 91.33 ± 14.88 74.52 ± 13.54 

CF-CNN 82.15 ± 10.76 0.17 ± 0.23 92.75 ± 12.83 75.84 ± 13.14 

GDGH Set DSC (%) ASD (mm) SEN (%) PPV (%) 

Level Set 66.02 ± 17.21 0.78 ± 0.65 60.83 ± 17.98 79.24 ± 21.38 

Graph Cut 74.13 ± 13.32 0.83 ± 0.56 82.94 ± 13.66 69.24 ± 16.60 

U-Net 75.26 ± 11.82 0.4 9 ± 0.4 8 76.65 ± 16.42 77.21 ± 11.57 

3-D-Patch Branch 77.89 ± 10.64 0.40 ± 0.31 81.29 ± 15.60 76.95 ± 11.62 

2-D-Patch Branch 78.98 ± 11.96 0.38 ± 0.39 81.42 ± 16.90 79.65 ± 12.20 

CF-CNN-MP 78.61 ± 12.18 0.39 ± 0.38 80.93 ± 17.07 79.38 ± 12.03 

CF-CNN 80.02 ± 11.09 0.35 ± 0.34 83.19 ± 15.22 79.30 ± 12.09 

Note: 3-D-Patch Branch and 2-D-Patch Branch represent the 3-D and 2-D branches in 

CF-CNN model. CF-CNN-MP represents the CF-CNN model using traditional max pooling 

instead of central pooling. 
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Table 4 

Mean DSCs (%) of pair-wise comparison between each radiologist 

and CF-CNN. R1 to R4 represent the four radiologists. 

R1 R2 R3 R4 Average 

R2 83.45 – 83.76 83.98 

R3 83.32 83.76 – 83.61 83.64 ± 0.25 

R4 83.25 83.98 83.61 –

CF-CNN 81.72 81.66 81.57 81.67 81.66 ± 0.05 
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Two widely used methods including level set with active con-

ours ( Chan and Vese, 2001 ) and graph cut ( Boykov and Kol-

ogorov, 2004 ) were used as comparison with the proposed CF-

NN. The parameters in level set and graph cut were all optimized

y a parameter grid searching using the Fiji software ( Schindelin

t al., 2012 ). In the level set method, fast marching was firstly used

o generate the initial nodule contour. Then, active contours model

as used for further contour refining. The parameters were set as:

ray value threshold = 50, distance threshold = 0.1 for fast march-

ng; and advection = 2.20, curvature = 1.00, gray scale tolerance

 30.00, convergence = 0.005 for active contours model. In the

raph cut method, there were two parameters involved in Fiji soft-

are. These parameters were set as: data prior (foreground bias)

 0.86 and edge weights (smoothness) = 0.56. Both the level set

nd graph cut methods were applied on 2-D image slices. Finally,

he same slices were selected for measuring performance across all

ompared methods. 

Furthermore, to compare the proposed CF-CNN with other

eep-learning methods, we implemented a state-of-the-art FCN

odel, termed U-Net ( Ronneberger et al., 2015 ). The network ar-

hitecture we used was the same with the published paper. To

ake a fair comparison, all the training images were from the nod-

le ROI image instead of the whole CT scan. Since the input image

ize of U-Net was 572 × 572, we padded the nodule ROI image

ith “reflect padding” to fit the 572 × 572 size, meaning that the

added voxels were acquired by mirroring the existing image. In

he testing phase, we used the ground-truth bounding box for ini-

ialization of all the compared methods (e.g., level set, graph cut

nd U-Net) to ensure a fair experimental comparison, and they

ere all post-processed using the same way. 

. Results 

.1. Overall performance 

From Table 3 , we observed that the proposed CF-CNN model

utperformed graph cut and level set on LIDC dataset. In addition,

hen testing on the independent GDGH dataset, the strong re-

ults of CF-CNN reaffirmed the competitive outcomes of segment-

ng different types of lung nodules. In particular, we demonstrated

he advantage of the proposed central pooling layer by addition-

lly comparing CF-CNN with CF-CNN-MP, where CF-CNN-MP rep-

esents the CF-CNN model with traditional max pooling. Table 3 il-

ustrated that the proposed central pooling layer improved the av-
rage DSC value by around 2% on both datasets. In addition, the

ombination of 3-D-patch and 2-D-patch branches also improved

he model performance. CF-CNN outperformed single 3-D-patch

ranch or single 2-D-patch branch as indicated in Table 3 . To en-

ble a full observation of all testing nodules, as seen in Fig. 7 , we

howed the overall distributions of the obtained DSC scores from

he two datasets. 

In Table 3 , the ground truth was combined with the annota-

ions by four radiologists using a 50% consistency criterion. To have

n intuition of the consistency between different individual human

xperts, we performed a pairwise DSC comparison between the CF-

NN and the four radiologists as demonstrated in Table 4 . Our re-

ults showed that the DSC between CF-CNN and each radiologist

s 81.66% on average, which compared favorably with the average

nter-radiologist variability of 83.64%. Moreover, the CF-CNN also

howed stability when compared with four different radiologists,

ince the average DSC between CF-CNN and each radiologist is sta-

le at 81.57%–81.72%. 

As mentioned in Section 1.1 , Kubota et al. (2011) , Messay et al.

2010) and other researchers also evaluated their methods on the

IDC dataset. Consequently, in Table 5 , we listed the methods

hich required only a user initialization (e.g., a VOI or seed point)

rocedure without further user interaction. Since these methods

sed overlap O = V ( Gt 
⋂ 

Auto ) / V ( Gt 
⋃ 

Auto ) to measure the model

erformance, we additionally reported our results using the same

easurement in this table. Of note, among all the listed methods,

ur method is evaluated on a larger amount of testing set includ-

ng different types of lung nodules as presented in Fig. 1 . 

.2. Robustness of segmentation 

We showed that CF-CNN can process various types of nod-

les with similar performance indicating potential segmentation

obustness. The LIDC testing set includes various nodules reflecting

ifferent levels of segmentation difficulties. All the nodules in this
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Fig. 7. DSC distributions of the LIDC testing set and GDGH dataset. 

Table 5 

Performance of various lung nodule segmentation methods on the LIDC-IDRI 

dataset. 

Methods Year Nodule amount Overlap 

Training Testing 

Tachibana and Kido (2006) 2006 – 23 50.7 ± 21.9% 

Wang et al. (2009) 2009 23 64 58% 

Messay et al. (2010) 2010 – 68 63 ± 16% 

Kubota et al. (2011) 2011 – 23 69 ± 18% 

82 59 ± 19% 

Tan et al. (2013) 2013 – 23 65% 

Lassen et al. (2015) 2015 – 19 52 ± 7% 

40 50 ± 14% 

Messay et al. (2015) 2015 300 66 71.70 ± 19.89% 

77 69.23 ± 13.82% 

Proposed CF-CNN 2017 350 493 71.16 ± 12.22 % 

Table 6 

DSCs on different nodule groups of the LIDC testing set. 

Characteristic scores 

Characteristics 1 2 3 4 5 6 

Spiculation 81.49 82.43 82.03 84.57 85.95 –

[239] [185] [ 27] [37] [ 5] –

Malignancy 82.40 78.30 81.36 84.73 87.81 –

[46] [95] [183] [149] [20] –

Calcification – 88.64 83.28 83.05 86.15 81.77 

– [2] [26] [36] [20] [409] 

Sphericity – 78.12 79.92 82.66 83.47 –

– [10] [90] [344] [49] –

Note: The nodules are grouped based on their clinical characteristic scores. 

The numbers in square brackets represent the number of nodules in this 

group. The characteristic scores given by four radiologists are averaged. 

Table 7 

DSCs and ASDs for attached and non-attached nodules on the two testing 

sets. 

LIDC testing set GDGH dataset 

Attached Non-attached Attached Non-attached 

(n = 113) (n = 380) (n = 18) (n = 56) 

DSC (%) 81.65 82.30 80.55 79.85 

ASD (mm) 0.21 0.16 0.37 0.35 
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dataset were given nine characteristics to represent their spheric-

ity, the likelihood of malignancy, and other properties. We chose

four representative characteristics and divided the testing set into

different groups according to their characteristic scores. The aver-

age DSCs on different groups are shown in Table 6 . All groups in

this table have similar DSC values which highlighted that our ap-

proach was able to capture nodule shapes with regards to different

clinical characteristics. 

In Table 7 , we further summarized results of challenging at-

tached nodules (juxtapleural and juxtavascular nodules). The pro-
osed CF-CNN presented appealing performance on these nodules.

he outcomes indicated a potential robustness of CF-CNN segmen-

ation that was irrespective of attached conditions of nodules. 

.3. Visualization 

The segmentation results were visualized to allow comparison

f different approaches. We demonstrated five representative nod-

les from the LIDC testing set ( Fig. 8 , L1-L5) and three challenging

odules from the GDGH dataset ( Fig. 8 , G1-G3). 

For isolated solid nodules (L1), both our method and the state-

f-the-art methods performed well. However, when examining

odules attached to surrounding tissues (L2), the level set and

raph cut methods reduced performance because they were strug-

ling to differentiate nodules from pleura. In contrast, the proposed

F-CNN remained robust when segmenting such nodules, show-

ng the good feature learning ability of the CF-CNN model. For

avitary nodules (L3), the level set, graph cut, and U-Net meth-

ds falsely considered the cavity region as background; however,

F-CNN was able to reserve it correctly. Because of the heteroge-

eous intensity contrast between calcific and non-calcific tissues,

he level set method identified only the calcific region whereas ig-

ored the non-calcific part. In contrast, our CF-CNN was able to

etect both parts and reserve the complete nodule (L4). When ex-

mining GGO nodules containing cavity structures inside (L5), level

et and graph cut methods tended to show under segmentation,

ince they cannot distinguish nodule voxels from background be-

ause of the low intensity contrast. Affected by the cavity structure,

utputs from U-Net identified only part of the nodule (L5). 

When testing on the GDGH dataset, challenging nodules were

ostly found to be juxtapleural and multi-cavitary. Fig. 8 (G1-G3)

howed the segmentation results of different methods on these

hallenging cases in the GDGH dataset. G1, G2, and G3 indicated

uxtapleural, multi-cavitary, and GGO nodule attached to vessel re-

pectively. When attachment happened between nodule and lung

all (G1) or vessel (G3), the level set and graph cut methods in-

ended to show under segmentation, because they were unable to

dentify attached tissues from nodule. Similar to the L3 nodule in

IDC testing set, the cavity structures also affected the U-Net per-

ormance (G2) in the GDGH dataset. Whereas CF-CNN performed

easonably well in capturing the complete nodule shape. 

Fig. 9 further showed multiple segmented slices of two juxta-

leural cases from the LIDC testing set and GDGH dataset when

pplying CF-CNN. This figure indicated that the segmentation re-

ults of CF-CNN showed much overlap with the ground truth con-

ours. 

. Discussion and conclusion 

In this study, we proposed a CF-CNN model for lung nodule

egmentation that leveraged both 2-D and 3-D volumetric CT im-
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Fig. 8. Segmentation results visualization. From top to bottom: nodule with ground truth, level set segmentation, graph cut segmentation, U-Net segmentation, and CF-CNN 

segmentation. L1-L5 are nodules of different types from the LIDC testing set. G1-G3 are nodules from the GDGH dataset. 

Fig. 9. Segmentation results of CF-CNN on two juxtapleural nodules from the LIDC testing set (L1-L14) and GDGH dataset (G1-G14). The red and yellow contours denote the 

ground truth and the segmentation results of the CF-CNN method, respectively. The numbers in the upper left corner of each image represent the CT slice number of this 

nodule. The red and yellow 3-D renderings are from the ground truth and the CF-CNN results. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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ges. The approach demonstrated a strong ability to learn nodule-

ensitive features automatically from large amounts of CT image

atches (0.41 million voxel patches). Our CF-CNN achieved encour-

ging segmentation accuracy on nodules with various clinical char-

cteristics ( Table 6 ). By comparing with several widely used lung
odule segmentation methods, our method showed superior per-

ormance in segmentation accuracy (DSC = 82.15% for LIDC and

SC = 80.02% for GDGH, Table 3 ). Especially, the CF-CNN model

an successfully segment challenging cases where nodules were

ttached to pleura ( Table 7 ). Moreover, we compared our results
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with the inter-radiologists consistency on LIDC dataset, showing a

difference in average dice score of only 1.98% ( Table 4 ). 

The CF-CNN model specifically incorporated a two-branch

structure for extracting both 3-D and 2-D features simultaneously.

The 3-D-patch branch can learn features from different image

views, while the 2-D branch extracted multi-scale features through

a multi-scale patch strategy. For a given voxel patch, the patch cen-

ter textures were more relevant to the target voxel. Consequently,

we proposed a novel central pooling layer to reserve much patch

center features while eliminate redundant patch edge features.

This operation applied non-uniformly distributed pooling kernels

on the input image. Specifically, small pooling kernels (size s = 1)

are distributed around patch center while large pooling kernels (s

= 2, 3) are located around input patch edge. 

In the design of convolutional architecture, we adopted deep

stacked structure with small convolutional kernels (size 3 × 3) in-

stead of a shallow structure with big convolutional kernels. In fact,

a stack of two 3 × 3 convolutional kernels have an effective re-

spective field of 5 × 5 ( Simonyan and Zisserman, 2014 ). However,

the stacked two-layer structure allows the extraction of stronger

nonlinear deep features benefiting from the design of PReLU acti-

vation function after each layer ( Lin et al., 2013 ). In addition, small

convolutional kernels are known to be able to reduce the parame-

ter numbers in the network, thereby making it less prone to over

fitting ( Simonyan and Zisserman, 2014 ). 

During model training, the training voxel patch selection is dif-

ficult because of the imbalanced labels. Specifically, only less than

5% voxels belong to nodule while more than 95% voxels are non-

nodule tissues in training CT images. We solved this problem by

proposing a weighted sampling method to select only the chal-

lenging voxels. In practice, nodule edge voxels and nodule-attached

voxels are found to be challenging for various segmentation meth-

ods. Consequently, in the training set, we defined two distance

functions to find these voxels, and assigned them higher weight

score than other voxels. Finally, 40% of all voxels were sampled ac-

cording to their corresponding weight scores. 

Since the proposed CF-CNN is particularly dealing with volu-

metric CT imaging data at scale, we incorporated a GPU acceler-

ator to gain computational efficiency. When segmenting a nodule

in a 50 × 50 image, the CF-CNN only required 6.92 seconds after

GPU acceleration. Furthermore, the use of specified bounding box

largely reduced the computational burden in searching the nodule

space in CT. It is the only pre-procedure that allowed our CF-CNN

to initialize the computation. Alternatively, dedicated lung nodule

detection algorithms providing an estimated cuboid of nodule can

be directly integrated into our method to construct a fully auto-

matic system. 

In conclusion, the proposed CF-CNN model highlighted the

power of image-based deep learning architecture in finding dis-

criminative features for lung nodule segmentation. Our approach

presented a unique advantage in capturing nodule-sensitive infor-

mation from CT imaging data. In the future work, we plan to in-

tegrate our proposed central pooling layer and two-branch archi-

tecture into the FCN network to seek potential improvement and

reduce computational burdens. 
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