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Abstract
Objective To develop and validate an individual radiomics nomogram for differential diagnosis between multiple sclerosis (MS)
and neuromyelitis optica spectrum disorder (NMOSD).
Methods We retrospectively collected 67 MS and 68 NMOSD with spinal cord lesions as a primary cohort and prospectively
recruited 28MS and 26 NMOSD patients as a validation cohort. Radiomic features were extracted from the spinal cord lesions. A
prediction model for differentiating MS and NMOSD was built by combining the radiomic features with several clinical and
routine MRI measurements. The performance of the model was assessed with respect to its calibration plot and clinical discrim-
ination in the primary and validation cohorts.
Results Nine radiomics features extracted from an initial set of 485, predominantly reflecting lesion heterogeneity, combined
with lesion length, patient sex, and EDSS, were selected to build the model for differentiatingMS and NMOSD. The areas under
the ROC curves (AUC) for differentiating the two diseases were 0.8808 and 0.7115, for the primary and validation cohort,
respectively. This model demonstrated good calibration (C-index was 0.906 and 0.802 in primary and validation cohort).
Conclusions Avalidated nomogram that incorporates the radiomic signature of spinal cord lesions, as well as cord lesion length,
sex, and EDSS score, can usefully differentiate MS and NMOSD.
Key Points
• Radiomic features of spinal cord lesions in MS and NMOSD were different.
• Radiomic signatures can capture pathological alterations and help differentiate MS and NMOSD.
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Abbreviations
AUC Areas under the ROC curves
EDSS Expanded disability status scale
LASSO Least absolute shrinkage and selection operator
LETM Longitudinal extensive transverse myelitis
MS Multiple sclerosis
NMOSD Neuromyelitis optica spectrum disorder
ROC Receiver operating characteristic
ROI Region of interest
RRMS Relapsing-remitting MS

Introduction

Multiple sclerosis (MS) and neuromyelitis optica spectrum
disorder (NMOSD) are the two major inflammatory demye-
linating diseases of the central nervous system [1, 2].
Clinically distinguishing the two diseases is critical, because
their prognoses and treatments differ [2], and some MS treat-
ments can exacerbate NMOSD [3, 4]. Despite the existence of
diagnostic criteria [5–7], the differential diagnosis of the two
diseases can be difficult [8], especially at the clinical onset. It
is crucial to identify new effective biomarkers for quantifying
the pathological alterations and accurately differentiating the
two diseases, ideally biomarkers obtainable from routine clin-
ical MRI data.

The principal MRI findings in both MS and NMOSD are
spinal cord lesions, which are assessed visually, and described
qualitatively based on the clinical imaging settings [2, 9]. The
lesion characteristics cannot, however, be evaluated quantita-
tively by visual inspection.

Quantitative comprehensive evaluation of the lesions, such
as textural or wavelet features, needs advanced analysis tech-
niques. The radiomics method, as an emerging and attractive
field, is the process of converting medical images into high-
dimensional, mineable data via high-throughput extraction of
quantitative features, followed by subsequent data analysis for
decision support [10, 11]. Radiomic features have great poten-
tial to provide valuable information for clarifying pathophys-
iology, assisting in differential diagnosis, and guiding person-
alized therapy in MS and NMOSD. A nomogram uses a set of
discriminative features derived from a regression model and
assigns each feature a weight that represents its value for clin-
ical prediction [12].

This study aims to investigate the radiomic features of spi-
nal cord lesions in MS and NMOSD and to develop and val-
idate a nomogram that incorporates the radiomic signature and
other clinical variables, for individualized differential diagno-
sis of the two diseases.

Materials and methods

Standard protocol approvals, registrations,
and patient consents

The institutional review board of Xuanwu Hospital, Capital
Medical University, approved the study, and written informed
consent was obtained from each participant prior to
participation.

Participants

A total of 189 patients with spinal cord lesions, including
95 patients with MS and 94 with NMOSD, were recruited
from Department of Radiology, Xuanwu Hospital, Capital
Medical University. For the primary cohort, we retrospec-
tively enrolled 67 MS and 68 NMOSD patients, from
January 2015 to June 2016. A validation cohort was col-
lected prospectively, including 28 consecutive patients
with MS and 26 with NMOSD, from July 2016 to
December 2016. The inclusion criteria for this study were
(1) a confirmed diagnosis of either NMOSD, according to
the standard diagnosis criteria [6], or relapsing-remitting
MS (RRMS), according to the 2010 McDonald criteria
[13]; (2) spinal cord lesions visible on T2 images; (3)
being in remission (relapse-free for at least 4 weeks) and
without treatment by disease-modifying medications with-
in 4 weeks before the MRI scans, to exclude the con-
founding effects of edema or medication on the MRI mea-
surements; and (4) to exclude the possible diagnostic con-
founders of AQP4-negative NMO patients, all included
patients with NMOSD were anti-AQP4 antibody positive.
The exclusion criteria included (1) a history of spinal cord
injury or clinically significant neurologic disease other
than MS or NMOSD and (2) image artifacts or incomplete
clinical information. The principal demographic and clin-
ical characteristics of the patients are shown in Table 1.

MRI acquisition

All spinal cord MRI scans were performed using a 3.0 Tesla
MR system (Siemens Magnetom Trio Tim system). Whole
spinal cord (cervical, thoracic, and lumbar) imaging included
3-mm-thick sagittal sections and 4-mm-thick axial sections
using turbo spin-echo T2-weighted sequences (TR/TE:
3000/130 ms, in-plane resolution 1.0 mm2, field of view =
320 × 260 mm2). Hyperintense cord lesions were marked as
regions of interest (ROIs) on sagittal T2-weighted images by
an experienced neuroradiologist (Y.D) using MRIcro software
(http://www.mccauslandcenter.sc.edu/mricro/mricro/mricro.
html).
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Radiomic methods

In our study, we applied the emerging technique of radiomics
to discriminate MS from NMOSD (Fig. 1). The process in-
cluded mainly the following steps:

A. Feature extraction: We described the ROIs including
the spinal cord lesions by extracting four sets of
radiomic features [14]: (1) shape and size features,
(2) gray scale intensity features, (3) textural features,
and (4) wavelet features. Shape and size features
represented the phenotype of physical characteristics
for tumor information, such as shape, area, volume,
compactness. Gray scale intensity features were
based on the differences of signal intensity histo-
gram and distribution within the ROIs. Textural fea-
tures encoded the relationships between nearby
voxels within ROIs. Wavelet features were derived
from a transformation of the grayscale intensity and
texture features. Further information about the spe-
cific radiomic features is shown in the supplementa-
ry materials (figure S1-3).

B. Feature selection: To determine representative features
for generalizing and optimizing the model, we used the
least absolute shrinkage and selection operator (LASSO)
method to select features for building a logistic regression
model [15].

Radiomic nomogram construction and validation

We built a predictive model for differentiating MS from
NMOSD using the radiomic features combined with several
clinical variables, and a receiver operating characteristic
(ROC) curve was plotted to quantify the performance of the
model. An individual radiomic nomogram was developed
using multivariable logistic regression based on discrimina-
tive predictors for the primary cohort. To compare the perfor-
mance of the radiomic model and clinically routine methods,
we also built two other models for differentiating NMOSD
and MS: (1) longitudinal extensive transverse myelitis
(LETM) and (2) only radiomic features.

To quantify the discrimination of the radiomic nomogram,
we generated a calibration plot for it and also calculated
Harrell’s significant concordance index (C-index).
Bootstrapping validation, with 1000 bootstrap resamples,
was used to obtain the C-index.

Statistical analysis

We performed statistical analysis using Matlab 2015b
(MathWorks) and R software, version 3.3.3 (http://www.R-
project.org). We used SPM12 from Matlab 2015b to analyze
the original MRI scans, for feature extraction and feature

Table 1 Characteristics of patients in the primary and validation cohorts

Characteristics Primary cohort p Validation cohort p

MS NMOSD MS NMOSD

No. of patients 67 68 28 26

Age (mean ± std) 35.1 ± 10.5 39.8 ± 14.0 0.033a 39.1 ± 10.9 39.0 ± 12.4 0.893a

Sex 0.009b 0.007b

Male 25 (37%) 12 (18%) 7 (25%) 2 (8%)

Female 42 (63%) 56 (82%) 21 (75%) 24 (92%)

Total cord lesion length (mean ± std) 2.5 ± 1.3 3.7 ± 1.8 < 0.001c 3.3 ± 1.7 4.4 ± 1.8 0.058 c

Number of cord lesions (median) 2 1 0.697c 2 2 0.620 c

Disease duration (month) (mean ± std) 51.6 ± 58.3 43.5 ± 55.3 0.205 c 46.7 ± 43.3 26.3 ± 42.7 0.080 c

Number of relapses (median) 2.8 3.4 0.403 c 3.5 3.2 0.799 c

EDSS (median) 3.0 4.5 0.053 c 3.5 4.5 0.066 c

Radiomic score
(mean ± std)

0.2 ± 0.7 − 0.2 ± 0.6 < 0.001c 0.1 ± 0.2 − 0.2 ± 0.3 0.006 c

Data are presented as mean ± standard or median, depending on normality (Lilliefors test)

EDSS, Expanded Disability Status Scale; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder
a p values obtained using two-sample two-tailed t tests
b p values obtained using Pearson’s chi-square test
c p values obtained using two-tailed Wilcoxon’s rank sum tests

The radiomic score measures the strength of prediction for each patient
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selection. The R packages Bglmnet,^ Brms,^ and BHmisc^
were used for LASSO binary logistic regression and
nomogram construction. A radiomic nomogram was
constructed based on the results of the multivariable
analysis, using the package Brms.^ We calculated the C-
index, to measure the performance of the nomogram, using
the package BHmisc.^ Discrete data encoding the sexes of the
patients were analyzed using the chi-square test. Two-sided
two-sample t tests or Wilcoxon’s rank sum tests were used to
assess between-group differences for continuous demographic
or clinical data, depending on whether they were normally
distributed (Lilliefors test). A result was considered statistical-
ly significant if the p value was less than 0.05.

Results

Clinical data analysis

The demographic and clinical characteristics of the patients with
MS and NMOSD are summarized in Table 1. The NMOSD
patients showed a greater female predominance, and higher ex-
panded disability status scale (EDSS) values, than the MS pa-
tients, in both the primary and validation cohorts. There were no

significant differences between the primary and validation co-
horts in terms of clinical variables (p > 0.05).

Radiomic features

To differentiate MS and NMOSD, we extracted 485 radiomic
features from the ROIs, plus 6 clinical and routine MRI mea-
surements: sex, age, disease duration, number of relapses,
EDSS score, spinal cord lesion length, and the number of cord
lesions. The process is shown in figure S4. After feature se-
lection, the initial 485 radiomic features were reduced to 9
features. Furthermore, 7 potential clinical and routine MRI
characteristics were reduced to 3 variables, which were used
to develop the LASSO logistic regression model. The features
u s e d w e r e W L L H _GLCM_ c l u s t e r _ t e n d e n c y,
W L H L _ G L C M _ d i f f e r e n c e _ e n t r o p y ,
WH L L _GLCM_ c l u s t e r _ s h a d e , GLRLM_SRE ,
WLHL_GLRLM_LRE, WLHL_GLRLM_LRLGLE,
WHLL_GLRLM_LRHGLE, WHLH_GLRLM_LRE,
WHLH_GLRLM_LRLGLE, lesion length, sex, and EDSS
score. The definitions of these features are shown in the sup-
plementary materials (table S1, table S2).

We depicted receiver operating characteristic (ROC) curves
to assess the performance of different models. Firstly, we

Fig. 1 Radiomic procedure. a Original magnetic resonance images of
patients and contours of lesions delineated by an experienced
radiologist. b Radiomic feature analysis for the features extracted from
the segmented regions of interest (ROIs), such as shape, intensity, and

texture and wavelet features and in combination with clinical factors. c
Predictive analysis using the least absolute shrinkage and selection
operator (LASSO) regression model
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developed a clinical model by routine clinical method (LETM
model) to discriminate the NMOSD and MS, and the areas
under the ROC curves (AUC) were 0.623 and 0.560 for the
primary and validation cohorts, respectively (Fig. 2a). The
model with only radiomic features demonstrated the AUC
were 0.836 and 0.731 in primary and validation cohorts
(Fig. 2b). Particularly, when we constructed the model with
the radiomic features in combination with clinical variables,
the AUC were 0.8808 and 0.7115 in the primary and valida-
tion cohorts (Fig. 2c). We found that the accuracy of the model
by radiomic features combined with clinical variables were
26% (in the primary cohort) and 15% (in validation cohort)
higher than the routine clinical method (LETM model). We
calculated a radiomic score to represent the value predicted by
the LASSO regression model for each patient. The distribu-
tion of scores was shown in the supplementary materials
(Figure S5-6). The mean values of the radiomic score for MS
and NMOSD, respectively, were 0.174 and − 0.206 in the pri-
mary cohort, and 0.118 and − 0.177 in the validation cohort.

In consideration of the fact that MS and NMOSD occur
more frequently in female patients, we also investigated the
discriminative performance of the radiomic features in the
female cohort. The AUCs were 0.898 and 0.6684 for the fe-
male primary and validation cohorts, respectively (figure S7).

Radiomic nomogram and validation

An individualized prediction model for discriminating MS
and NMO was developed using the multivariable logistic re-
gression analysis, and represented by a nomogram (Fig. 3).
The C-index for the nomogram was 0.8902 (95% CI, 0.851 to
0.932). Calibration plots were used to correct the predictions
of the radiomic nomogram for the primary cohort, to satisfy
the Hosmer-Lemeshow test. We calculated the C-index and
1000 bootstrap resamples for the corrected version of the

nomogram. For the primary cohort, the corrected C-index
was 0.870 via bootstrapping validation. For the validation
cohort, the C-index of the calibrated version of the radiomic
nomogram was 0.804 (95% CI, 0.690 to 0.917) and the
corrected C-index was 0.782 via bootstrapping validation
(Fig. 4).

Discussion

In this study, we identified differences between the radiomic
features of spinal cord lesions in MS and NMOSD and devel-
oped and validated a nomogram combining radiomic features
with clinical variables, to differentiate the two diseases.

Spinal cord lesions in MS and NMOSD are commonly
observed clinically [9, 16, 17], but previous studies focused
on visual assessment of properties of the lesions, such as the
lesion length, lesion distribution, or lesion signal strength [18].
Complex patterns of the pathology in lesions, which are com-
monly encountered inmedical images, are difficult to interpret
and require advanced analysis techniques. Radiomics uses
high-throughput advanced quantitative features to objectively
and quantitatively describe the characteristics of lesions.
These features, termed radiomic features, can be extracted
from medical images using mathematical algorithms, with
the goal of discovering lesion characteristics that may not be
perceptible by the naked eye [10, 11, 14, 19]. Thus, radiomics
has great potential to capture important information for differ-
ential diagnosis and personalized therapy. The main radiomic
features differentiating the two diseases (MS vs NMOSD) are
measures of the heterogeneity of the lesion signal, such as
W L L H _ G L C M _ c l u s t e r _ t e n d e n c y a n d
WLHL_GLCM_difference_entropy. This radiomic signature
can be used to differentiate MS from NMOSD based on sig-
nificantly different radiomic scores. A previous MRI

Fig. 2 Receiver operating characteristic (ROC) curve analysis. Each
model was constructed in primary cohort with 135 patients, and validated
with 54 patients in validation cohort to test the model. a ROC curve
analysis for the model constructed by the presence or absence of

longitudinal extensive transverse myelitis (LETM). b ROC curves for
the model constructed by radiomic feature. c ROC curve analysis for
the model constructed by radiomic features and clinical variables
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pathological study showed that greater MRI radiomic hetero-
geneity (i.e., stronger texture features) is associated with more
severe pathological damage (more severe demyelination and
greater axonal damage) [20]. Our radiomic results identified
more severe pathological damage in NMOSD than in MS,
which is consistent with pathological studies showing more
severe demyelination and greater axonal loss in NMOSD than
in MS, and with the observation that NMOSD lesions can
show necrotic and cystic changes with extensive tissue de-
struction [21, 22]. These features can be captured and quanti-
fied by radiomics and may help to understand the pathophys-
iology of the disease. Furthermore, the radiomic model is su-
perior (around 20% increase in accuracy) than the clinically
routine method which based on whether LETM present,
highlighting its clinical importance.

A nomogram permits calculation of the cumulative ef-
fect of multiple differentiating factors [23]. By weighting
the influence of each factor, the nomogram provides an
appreciation of the relative magnitude of influence of each
factor on the differential diagnosis. The advantage of a
nomogram over an adjusted regression model is that,
while the latter returns estimates of the average effects
across a population, a nomogram permits individualized
predictions [12]. A nomogram based on clinical and MRI
measurements has been used to predict the clinical con-
version of the clinically isolated syndrome [24]; however,
radiomic features were not included in the model. The
radiomic features of cord lesions dominated the nomo-
gram in terms of the relative contribution to total points
and differential diagnosis between the two diseases.

Fig. 4 Calibration of the radiomic nomogram. a Calibration plot of the
radiomic nomogram for the primary cohort of 135 patients. The C-index
was 0.8902 (95% CI, 0.851 to 0.932). The corrected C-index was 0.870
via bootstrapping validation. b Calibration plot of the radiomic nomo-
gram for the validation cohort of 54 patients. The C-index was 0.804
(95% CI, 0.690 to 0.917). The corrected C-index was 0.782 via
bootstrapping validation. We generated the calibration plot for the

primary cohort to test discrimination of model prediction ability for MS
and NMOSD. The x-axis represents the nomogram predicted probability;
the y-axis represents the actual probability. The blue diagonal dotted line
represents an ideal prediction by an optimal model. The red diagonal
dotted line represents the prediction by the nomogram. The black solid
line represents the performance on multiple sets of bootstrap samples

Fig. 3 Nomogram with radiomic
and clinical variables. Using this
tool, it is possible to generate a
quantitative prediction for each
patient by adding up the total
number of points
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Spinal cord lesion length, sex, and EDSS score were also
useful as factors in the nomogram, to help differentiate MS
from NMOSD. This finding is consistent with our clinical
observations and previous publications that patients with
NMOSD showed greater lesion length, greater female pre-
dominance, and higher EDSS scores than patients with MS
[2, 17]. By combining these clinical and routine MRI features
with radiomic signatures, the model can differentiate the two
diseases accurately, highlighting the importance of compre-
hensive consideration of clinical and imaging features. The
performance (AUC) of the model combining radiomic fea-
tures and clinical variables is slightly lower than the radiomic
features alone for the validation cohort, which may due to the
relatively small sample size. Further work to validate the value
of clinical variables need to be performed. A visualized and
user-friendly nomogram needs to be developed at a clinical
setting for differential diagnosis.

Representative radiomic features (9 features) were selected
based on feature stability and prognostic performance in the
cohort and validated in an independent validation cohort.
Internal and external validations of the radiomics nomogram
were performed in the current study, and good calibration was
observed, implying the robustness of the method and its po-
tential clinical applications. To exclude the influence of an
effect of sex [25, 26], further validation was also performed
in the female cohort (since female patients were more com-
mon in both MS and NMOSD). The radiomic nomogram
showed equally good performance in distinguishing the two
diseases as for the full patient cohort.

To avoid over-fitting or bias, we used the least absolute
shrinkage and selection operator (LASSO) method to select
features for building a logistic regression model. The LASSO
method was an accepted tool and perfect mathematical theo-
retical basis for feature selection in medical image analysis
[15, 27, 28]. Moreover, it can shrink the nonsignificant
weights of features to zero with high efficiency.

Several limitations apply to this work. First, this was a pre-
liminary cross-sectional study using only spinal cord MR im-
ages. We did not evaluate the radiomic features of brain lesions,
optic nerve lesions, or normal-appearing tissues. A longitudinal
study with multimodal images, including the brain, spinal cord,
and optic nerve, is warranted to investigate radiomic characteris-
tics in other tissues, and dynamic changes in radiomic features, in
MS and NMOSD. Second, it is unclear which pathological
mechanisms are responsible for the radiomic heterogeneity
[29], and how tissue repair may modify these features. Finally,
our study was a single-center study using MR images (T2WI)
from one 3.0-T MRI scanner, and multiple factors (e.g. different
RF coils, parallel imaging algorithms or SNR) might also influ-
ence the radiomics results. Further study using data from diverse
scanners including both 3.0- and 1.5-T scanners using different
sequences and parameters in a multicenter setting is required to
validate our current findings and confirm their generalizability.

Conclusion

A validated nomogram that incorporates the radiomic signa-
tures combined with spinal cord lesions, cord lesion length,
patient sex, and EDSS could help differentiate MS and
NMOSD based on routine MRI data.
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