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Abstract
OBJECTIVE: To compare 2D and 3D radiomics features prognostic performance differences in CT images of non-
small cell lung cancer (NSCLC). METHOD: We enrolled 588 NSCLC patients from three independent cohorts. Two
sets of 463 patients from two different institutes were used as the training cohort. The remaining cohort with 125
patients was set as the validation cohort. A total of 1014 radiomics features (507 2D features and 507 3D features
correspondingly) were assessed. Based on the dichotomized survival data, 2D and 3D radiomics indicators were
calculated for each patient by trained classifiers. We used the area under the receiver operating characteristic
curve (AUC) to assess the prediction performance of trained classifiers (the support vector machine and logistic
regression). Kaplan–Meier and Cox hazard survival analyses were also employed. Harrell's concordance index (C-
Index) and Akaike's information criteria (AIC) were applied to assess the trained models. RESULTS: Radiomics
indicators were built and compared by AUCs. In the training cohort, 2D_AUC = 0.653, 3D_AUC = 0.671. In the
validation cohort, 2D_AUC = 0.755, 3D_AUC = 0.663. Both 2D and 3D trained indicators achieved significant
results (P b .05) in the Kaplan-Meier analysis and Cox regression. In the validation cohort, 2D Cox model had a C-
Index = 0.683 and AIC = 789.047; 3D Cox model obtained a C-Index = 0.632 and AIC = 799.409. CONCLUSION:
Both 2D and 3D CT radiomics features have a certain prognostic ability in NSCLC, but 2D features showed better
performance in our tests. Considering the cost of the radiomics features calculation, 2D features are more
recommended for use in the current study.
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Introduction
Lung cancer is one of the most common and deadly cancers in the
world, most of which are non-small cell lung cancer (NSCLC) (85%
to 90%) [1]. Current NSCLC guidelines suggest survival data having
a correlation with staging [2]. Both NSCLC patients' prognosis and
medical resources can benefit “personal treatment” from properly
predicted factors of refined subgroups [3]. Computed tomography
(CT) is the common tool for NSCLC diagnosis [4]. Many prior
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studies have worked on investigating multiple CT imaging factors and
indicators to improve the prediction, such as using image texture
analysis to measure the tumor heterogeneity and permeability [5].
“Radiomics” was proposed and introduced into clinical oncology

studies in the past 5 years. It converts medical images into numerical
features, and uses data-mining algorithms or statistical tools for
further analysis. By building appropriate models with refined features,
it has shown successful assessment and prediction abilities and applied
them in various challenging clinical tasks. Huang et al. found that the
radiomics features could be a potential biomarker for prognostic
prediction of the free survival in NSCLC [6]. Coroller et al.
demonstrated that the radiomics features can predict distant
metastasis in lung adenocarcinoma [7]. Aerts et al. have shown the
association of radiomics features' prognostic power and NSCLC gene
expression [8].
Radiomics research requires a huge amount of quantitative imaging

data [9]. Certain radiomics-based tools and system have been
developed and applied recently [10]. These tools could help
researchers in deriving implicit image features. To pick stable and
high-performance radiomics features is crucial for further study.
Balagurunathan et al. discussed the reproducibility of CT image
features in the NSCLC survival analysis [11,12]. However, when
extracting CT radiomics features, there is a basic trade-off. Tumor
lesions in CT images are expressed in multiple layers, thus one can
calculate features with the whole layers in 3D, or just calculate one
typical 2D layer's features (such as the layer with the largest lesion
cross-section). 2D features are easier to obtain with less labor
consumption, lower complexity and faster calculation. Intuitively, 3D
features are opposite to 2D's but might carry more information about
the tumor. Both 2D and 3D features have been employed in past
studies [6,8,13,14]. The performance differences between 2D and
3D radiomics features have not been discussed yet. This issue is
essential for further popularization of radiomics in clinical research.
In this paper, our hypothesis is that 3D radiomics features have

higher performance than 2D. To test this assumption, we assessed a
total of 1014 radiomics features in three independent cohorts
involving 588 NSCLC patients. We handled 2D and 3D features
groups (507 per group) into a series of parallel experiments
correspondingly. The selected features and statistical tools are
commonly used and reported in prior papers [6–8]. Therefore, our
investigation could refer to further radiomics-based clinical research
and diagnosis system building.

Materials and Methods
This retrospective study was approved by the institutional review
board of Henan Provincial Hospital, which waived the requirement
for patients' informed consent. Medical record review was performed
in accordance with the institutional ethics review board guidelines.
For using public data, we follow the citations and data usage policy
from “the cancer imaging archive” (TCIA) public access, which is
maintaining and operating the largest global public cancer
image-sharing platform [15]. The research sequence is illustrated in
Figure 1. Details could be checked in the following sections.

Patients
In the present study, we collected 588 NSCLC patients'

pre-treatment CT images from three cohorts. The inclusion criteria
of patients are: (a) patients who have no treatment before the image
taking; (b) patients who had pathologically confirmed grading results;
(c) aged over 18 years; and (d) CT images' slice thickness less than
5 mm.

Images of the training cohort were downloaded from the TCIA
website (http://www.cancerimagingarchive.net/). One dataset was
named as “NSCLC-Radiomics” provided by the Department of
Radiation Oncology (MAASTRO), Maastricht University, The
Netherlands. There are 422 patients received an FDG PET-CT
scan for radiotherapy treatment planning in a radiotherapy position
on a dedicated PET-CT simulator with both arms above the head.
For the FDG PET-CT scans, a Siemens Biograph (SOMATOM
Sensation-16 with an ECAT ACCEL PET scanner) was used. An
intravenous injection (weight * 4 + 20) MBq FDG (Tyco Health
Care, Amsterdam, The Netherlands) was followed by 10 ml of
physiological saline. After a 45-min uptake period, during which the
patient was encouraged to rest, PET and CT images were acquired. A
spiral CT (3 mm slice thickness) with or without intravenous contrast
was performed covering the complete thoracic region. We removed
15 cases from the original dataset for image reading issues, which
included all suspicious cases without intravenous contrast. The other
dataset of “TCIA” was named as a “LungCT-Diagnosis” provided by
the Moffitt Cancer Center with 61 patients. Specifically, the slice
thickness of CT images was between 2.5 mm to 6 mm. We also
removed five cases from the original dataset for tumor segmentation
issues and the slice thickness was over 5 mm. The protocol was
approved by the Institutional Review Board (IRB). Acquisition details
could be looked up in their published papers [8,16].

There are 125 images from the validation cohort were acquired
from the Department of Radiology at the Henan Provincial People's
Hospital during 2012 to 2015. Chest contrast-enhanced CT was
performed on every patient using one of the two multi-detector row
CT (MDCT) systems (Philips Brilliance 16 slices CT, Phillips
Medical System, the Netherlands or 64-slice LightSpeed VCT, GE
Medical systems, Milwaukee, USA), with the following acquisition
parameters: 120 kV; 160 mAs; 0.5 or 0.4 s rotation time; detector
collimation: 16 × 1.25 mm or 64 × 0.625 mm; field of view, 350 ×
350 mm; matrix, 512 × 512. After routine non-enhanced CT,
contrast-enhanced CT was performed after a 40s delay following
intravenous administration of 85 ml of iodinated contrast material
(Ultravist 370, Bayer Schering Pharma, Berlin, Germany) at a rate of
2.5–3.0 ml/s with a pump injector (Ulrich CT Plus 150, Ulrich
Medical, Ulm, Germany). The CT image was reconstructed with a
standard kernel. The slice thickness of the CT images was in the range
between 0.625 mm and 1.25 mm. These CT images were retrieved
from the picture archiving and communication system (PACS)
(Huahai, China). We only collected contrast-enhanced CT images for
the further analysis.

These three cohorts were independent and collected from different
centers. The survival end events were defined as the date of death.
The demographic statistics are listed in Table 1.

Tumor Segmentation
We performed the segmentation of lung lesions semi-automatically.

All images were read and processed in the raw DICOM format.
Radiologists with over 10 years of experience examined each layer of the
patients' CT data, and identified a proper point inside of the lesions.
This point would become a “seed point”. Afterwards, we used a
“toboggan based” growing automatic segmentation approach to deal
with those seed points [17]. Toboggan based growing algorithm is an
automaticmethod for lung lesion segmentation. The original seed point



Figure 1. The data flow sequence in this research. All patients' survival data were dichotomized by the cut-off of 2 years (1, larger than 2
years; 0, less than 2 years). Then, tumors' contours were segmented by our automatic algorithm. We extracted the 2D and 3D radiomics
features based on those segmentations. In the training cohort, we selected the extracted features depending on some rules. Based on
the selected features, we built and validated the radiomics indicators. Finally, the survival analysis was correlated with the survival time
and radiomics indicators. We then compared the 2D and 3D model in both the training and validation cohorts.
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could be obtained automatically by the improved toboggan algorithm.
Twenty-six neighborhoods of each voxel were calculated to determine
whether it could be included in the lung lesion region. Lesion boundary
was automatically determined by the result of the improved toboggan
algorithm. The accuracy of this method is 81% on average compared
with manual segmentation. Particularly, the segmentation algorithm
performed well for ground-glass nodules (86% compared to the
radiologists). This algorithm has been programmed as an add-on in the
Medical Imaging Toolkit (MITK), which is a C++ library for integrated
Table 1. Characteristics of Patients in the Training and Validation Cohorts

Characteristics Training Cohort Validation Cohort P-Value

Number of Patients 463 125
Gender .644

Male 310 83
Female 173 42

Age (years) b.001 ,†

Range 43–91 39–83
Median 68 63

Survival .135
Median (days) 462 482
No. N2 years 131 44

Overall stage .572
I 110 33
II 55 11
III and IV 298 81

Note: p-values are results of χ2 test for categorized variables and t test for continuous variables.
P b .05.

† Since the age information for “LungCT-Diagnosis” is missing, we only compared the other two datasets.
medical image processing and is developed by the Institute of
Automation, Chinese Academy of Sciences [18]. Finally, 3D regions
of tumors would be generated from “seed points” and highlighted.
Radiologists checked these segmentations until they were satisfied.
Since this segmentation method is based on the calculation of raw
images, it can minimize the experience of deviation between different
radiologists in order to improve the stability of the segmentation results,
and can improve this research efficiency. Figure 2 shows radiologists
working on this segmentation program and an example of the
segmentation result.

Radiomics Feature Extraction
We implemented this calculation procedure through our home-

made Matlab scripts (Matlab 2014b; Mathworks, Natick, MA, USA).
Image resampling is crucial preprocessing for 3D features extraction,
since the slide thickness of the data sets is different. We used Matlab
functions (“resample” and “reshape”) for down sampling or up
sampling that allows all of the CT images to be adjusted to 3 mm slice
spacing. Feature extraction was based on the segmentation results
from the previous section. For the 3D features group, we calculated
507 features in the labeled pixels inside the lesion contours. In
contrast, for the 2D features group, we calculated 507 features in the
labeled pixels for the layer that includes the maximum cross-section of
the lesion. As designed, the 3D features group and the 2D features
group should be one-to-one correspondingly. Both 2D and 3D
features groups involve certain categories: first-order histogram
statistics with 14 features, Gray-Level Co-occurrence Matrix



Figure 2. Screenshots of experienced radiologists working on the segmentation program, and the tumor segmentation result.
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(GLCM) with 12 features, Gray-Level Run-length Matrix (GLRL),
and Fractal Dimension with 13 features [19–21]. On the other hand,
totally 12 image filters with multiple scales were also employed:
Gaussian filter, Laplacian filter and wavelet. Hence, we finally
incorporated the combination of categories and multiple filters into
the radiomics feature set. Details of radiomics features are listed in the
Appendix A1.

Feature Selection
The statistical analysis was performed in R software (version 3.3.0;

http://www.Rproject.org). The used R packages in this paper are
listed in the Appendix. The reported statistical significance levels were
all two-sided at P = .05. Our feature selection strategy was based on
the features' stability and the classification performance of the
prognostics. Considering the generalization of the conclusion among
multiple data sources, the Kruskal-Wallis test (with random features
grouping, bootstrap for 1000 times) was adopted among features in
the training cohort to test each feature's stability. If the P-value after
the Kruskal Wallis test is larger than the significant threshold, this
indicates that this feature's distribution had no difference between
cohorts, hence the selected features were “stable features”. After that,
we correlated the features with patients' survival data. The univariate
Cox regression model was employed to achieve each feature's Harrell's
concordance index (C-Index), which represented the features'
classification performance to a certain extent [22]. Features with
potential prognostic power would have higher C-Indices. Finally, we
selected both stable and potential prognostic features to construct the
2D group's and 3D group's indicators of classification.

Statistical Tools
Selected features would be integrated as one indicator for the

prognostic prediction. In order to build this predictor, we introduced
the logistic regression as the classifier. Ten-fold cross-validation was
used for parameters tuning in the training cohort. The employed
classifiers were mainly applied to the binary classification issues. All
censored continuous survival data were dichotomized by a cutoff of 2
years. Hence, we temporally defined survival labels of the patients:
“1” represents those who live longer than the cutoff time and are
labeled as “0”. The cutoff time of 2 years referred to other studies
whose prediction models used this survival cutoff [23–26]. It could be
considered as a pertinent median survival time of NSCLC patients. If
a patient was labeled as “1,” this means it was in the high-risk group,
otherwise it was in the low-risk group. The radiomics indicators were
calculated for each patient by trained classifiers. We used the area
under the receiver operating characteristic (ROC) curve (AUC) to
assess the prediction performance of the classifiers, and a t test was
employed to assess the significant differences between the results.
Univariate analysis (two-sample t test) was used to evaluate the
rationality of the single selected feature. Next, the Kaplan–Meier
analysis was used to associate radiomics indicators with the survival
information in the validation cohort. The computed indicators were
utilized for splitting the survival curves. We then used the log-rank
test to assess significant differences between the two survival curves.
The computed radiomics indicators were also associated with survival
time and evaluated by the Cox hazard regression model. C-Index and
Akaike's information criteria (AIC) were used to assessed the building
of the Cox models [13,27]. Wilcoxon test was used to assess the
significance of the calculated C-Indices of models by the bootstrap
approach for 1000 times.

Control Experiments
We designed two control experiments to improve the comprehen-

siveness of our conclusion. We firstly removed patients with survival
time in the interval of 1.5 to 2 years in the both cohorts and repeated
the statistical analysis process. We hope it can amplify the difference
between long and short survivals for better observations. Secondly, we
selected the best 2D features and evaluated the performance of the
corresponding features with 3D features. It can enhance the
difference between 2D and 3D groups of features. We also repeated
the same analysis process as above. These two control experiment
were described in Appendix A3.

Results

Selected Features for the Radiomics Signature
Based on the Kruskal Wallis test, a total of 57 2D features and 47

3D features were filtered out. They had a similar distribution among
the patient cohorts, therefore they could be considered as stable
features. There were 15 corresponding features between the 2D and
3D groups in these stable features. Depending on the C-Index of the
univariate Cox regression of those selected features, we refined eight
features of each group to build the radiomics signature. These refined
features with their C-Indices are plotted in Figure 3. Higher C-indices
normally indicated higher prognostic performance of the features.
The two-sample t test showed the selected features' C-indices
(demonstrated in Figure 3) between the 2D and 3D groups that were



Figure 3. The refined radiomics features with their C-indices. (A) 2D features group; (B) 3D features group.
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significantly different (P b .001).We also performed a univariate analysis
on the selected features correlated with the dichotomized survival time.
We compared each feature's difference between the high-risk group
(labeled as “1”) and the low-risk group (labeled as “0”) in both the training
and validation cohorts with the t test. Table 2 lists the p-values of each
selected feature in the cohorts.
Survival Indicators Building
We implemented the logistical regression model depending on the

dichotomized survival data and the 16 selected radiomics features (8
features for each group). We assessed the predicted performance of
the logistic classifier by introducing ROC in both training and
validation phases. Figure 4 depicts their ROCs for the 2D and 3D



Table 2. t Test Results of the Feature Comparison Between High-Risk and Low-Risk Groups

2D Selected Features P-Value 3D Selected Features P-Value

Training Validation Training Validation

dd1_SKEWNESS 0.445 0.056 LHL_SKEWNESS 0.137 0.599
GLCM_CORRELATION 0134 0.036 GLCM_CORRELATION 0.700 0.004
dd2_GLRL_LRE 0.093 0.036 LHL_GLRL_LRE 0.138 0.046
dd1_GLCM_SUM_AVERAGE 0.025 0.031 LHL_GLCM_SUM_AVERAGE 0.026 0.895
dd1_GLCM_HOMOGENEITY 0.018 0.038 LHL_GLCM_HOMOGENEITY 0.063 0.048
hd2_GLRL_SRE 0.001 0.093 LHL_GLRL_SRE 0.193 0.744
dd1_GLRL_SRE 0.181 0.027 HLH_GLRL_SRE 0.372 0.672
dd1_GLRL_LRLGE 0.044 0.003 KURTOSIS 0.002 0.040

Note:
P b .05.

Figure 4. AUCs of radiomics indicators in both training and
validation cohorts. (A) The model comparison in the training
cohort: 2d_train_auc = 0.653, 3d_train_auc = 0.671; (B) The
model comparison in the validation cohort: 2d_validation_auc =
0.755, 3d_ validation_auc = 0.663.
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groups' comparison. For 2D and 3D indicators in the training cohort:
2D_AUC = auc = 0.653, 0.629 to 0.677 95% CI; 3D_AUC =
0.671, 0.647 to 0.694 95% CI. For indicators in the validation
cohort: 2D_AUC = 0.755, 0.732 to 0.777 95% CI; 3D_AUC =
0.663, 0.640 to 0.687 95% CI.

Consequently, we achieved binary indicators of each patient in
both the training and validation cohorts. Those indicators indicated
whether patients were in the high-risk group or the low-risk group.

Survival Analysis
Classified binary indicators were associated with censored

continuous survival data in the validation cohort. According to four
categorized indicators, Figure 5 shows Kaplan Meier curves with
significances of the log-rank test. The log-rank test results with the
curves show that our radiomics indicator successfully divided the
patients into high-risk and low-risk groups. Cox hazard regression was
also applied to assess those indicators. Table 3 lists the analysis results
of the hazard ratio (HR). Multivariable Cox regression results of the
selected features are listed in the Appendix. In the validation cohort,
the C-Index of the 2D model is 0.683 (0.651 to 0.716, 95% CI;
P b .001, Wilcoxon test). The C-Index of the 3D model is 0.632
(0.600 to 0.669, 95% CI; P = .001, Wilcoxon test). The AIC of the
2D model is 789.047, and the AIC of the 3D model is 799.409. We
have also achieved significant results of additional experiments.
Details could be checked in the Appendix A4.

Discussion
In the present study, we compared the 2D and 3D radiomics features
in NSCLC patients. We extracted a large number of quantitative
features from 588 NSCLC patients' CT images from three different
sources. We screened out 507 corresponding 2D and 3D features
(1014 in total) of all cases in two independent cohorts. We hope the
scale of our investigation can guarantee derived conclusions that are
comprehensive and reliable. To define the features' performance in
our study, we mainly assessed their stability and prognostic power.
They were involved in a series of experiments and statistical tests. We
would like to discuss those three properties below.

Because NSCLC lesions are mostly solid tumors, the performance
of NSCLC radiomics features is highly dependent on segmentation.
Numerous previous studies were based on manual segmentation, but
the differences in segmentation outcomes among different radiolo-
gists must be considered. One article discussed radiomics feature
differences between manual and automatic segmentation [11]. In a
sense, the utilized semi-automatic segmentation method in our study



Figure 5. Kaplan–Meier analysis of the radiomics feature based indicators that split high risk and low risk groups in the validation cohort.
(A) 2D model, P b .001, log-rank test (B) 3D model, P = .002, log-rank test.
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could eliminate the experience differences from manual segmentation
of radiologists. Under certain supervision and inspection, it takes an
upfront guarantee to the features' stability before the feature
extraction phase. Based on the Kruskal Wallis test results, we selected
57 3D features and 47 2D features correspondingly. In terms of the
quantity and reduction process, 2D and 3D feature groups are fairly



Table 3. Risk of Radiomics Indicators

HR P-Value 95% CI for HR

Lower Upper

2d_train 0.711 0.003 0.558 0.905
3d_train 0.692 0.001 0.546 0.877
2d_validation 0.421 b0.001 0.274 0.646
3d_validation 0.591 0.007 0.388 0.898

Note:
P b .05.
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close. In other words, a similar number of stable features were found
in the two groups. The selected features also tend to come from the
same family (features with the same image processes or with similar
wavelet filters). It could prove that the 2D and 3D feature groups are
similar from a stability perspective.
We compared the selected features' prognostic power by a

univariate analysis on features and multivariable regression models
of the survival analysis. Most of our selected features belong to the
same family, which includes the gray level texture features under the
wavelet filter. We can point out that this feature family is very stable
and represents the texture of the tumors significantly. As is known,
the texture of the tumors has a deep association with tumor
heterogeneity, as well as with the patients' prognosis [5,8,16]. The t
test results for the C-Indices of the univariate Cox regression
suggested that the features have differences in prognostic prediction,
and 2D features seemed better (higher C-Indices in Figure 3). Table 2
listed the results of the univariate analysis of the features
corresponding to the dichotomized survival time. We found multiple
2D and 3D features that were significantly different between the
high-risk and low-risk groups. This also proved the rationality of our
feature selection strategy, which screened out the stable and
predictable features. The prognostic indicators were constructed by
certain stable and predictable features with multivariable logistic
regression. Figure 4A showed that a 3D group's AUC was slightly
larger than the 2D's in the training cohort, but Figure 4B shows that
the 2D's AUC is better in the validation cohort. The AUC results are
reasonable and similar to a previous study [23]. Therefore, for the
integrated use of these selected features, the 3D and 2D groups
performed closely.
We employed the trained prognostic indicators and the survival

data for the survival analysis. The training cohort and the validation
cohort are independent. It would guarantee the reliability and credit
of our conclusions. Figure 5 and Table 3 demonstrated that both 2D
and 3D indicators achieved significant results in the Kaplan–Meier
analysis and Cox regression. C-Index of the 2D model was slightly
higher than the 3D model, but they all met the credible threshold.
The AIC results of the 2D and 3D model were also similar. Referring
to some former papers [7,8], we believe our created models are
workable and meaningful.
In summary, 2D groups performed slightly better than 3D ones,

since 2D had higher C-Indices in the selected features and a higher
C-Index in the model comparison. In control experiments, we also
achieved the similar results (details could be checked in Appendix
A3). Due to this result, we believe that 2D features had better
generalization ability. The reason for this result might be that the
resolutions of the CT images were not consistent. The transverse
plane's resolutions were different. This problem is difficult to avoid in
multi-center studies and retrospective studies. Although we did the
resample processing before the radiomics feature extraction, it may
still lead to errors. It is a slight deviation from the original definition of
the 3D feature calculation, although we assumed 3D features might
carry more dimensional information. This phenomenon is probably
more pronounced in MRI or PET modalities, since their images are
usually in thicker layers. On the other hand, it shows that 2D features
could be sufficient for certain tasks, but 3D features are more
time-consuming and require heavy-load computation. Along with the
spread of new CT techniques, such as dual source CTs and further
increase of computation power, these issues may be solved. Therefore,
in the short-term future, 2D radiomics features are more recom-
mended for clinical research and radiomics approaches based on
software development. Along with the spread of new CT techniques,
including dual source CTs and a further increase in computation
power, this issue may need to be reopened. Several articles also
discussed the repeatability, stability and classification issues of
radiomics features [12,16]. We reproduced an elemental process of
the radiomics research and achieved reasonable results. As more of the
features were extracted in our multi-center source designed tests, this
made our conclusions universal and more credible in general.

However, our prognostic indicators and models could be improved in
many ways, such as introducing other feature selection frameworks.
Another weakness of our study is that the 2-year cutoff is not equal to the
cohorts' median survival time. It results in an imbalance between positive
and negative dichotomized samples during classification tasks. This
problem can be solved by expanding the database and choosing a proper
cutoff [28]. In addition, we only implemented the radiomics approach of
the NSCLC survival analysis. Except for the shown tasks, radiomics can
be used for many other diseases and modalities. Consequently, our
conclusion should be conservatively generalized.

Conclusion
The present study was aimed to compare the prognostic performance
difference between 2D and 3D radiomics features in NSCLC. Both
2D and 3D features have a certain prognostic ability, but 2D features
performed slightly better and were easy to achieve. It is recommended
to choose 2D features in practical research.

Appendix A. Supplementary Data
Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.tranon.2017.08.007.
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